The relation between homotopy limits and Bauer's shape singular complex

Hanns Thiemann

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1989)

  • Volume: 30, Issue: 2, page 157-165
  • ISSN: 1245-530X

How to cite

top

Thiemann, Hanns. "The relation between homotopy limits and Bauer's shape singular complex." Cahiers de Topologie et Géométrie Différentielle Catégoriques 30.2 (1989): 157-165. <http://eudml.org/doc/91436>.

@article{Thiemann1989,
author = {Thiemann, Hanns},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {compact metric space; homotopy limit; (strong) shape singular complex; weak homotopy equivalence; strong shape equivalent},
language = {eng},
number = {2},
pages = {157-165},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The relation between homotopy limits and Bauer's shape singular complex},
url = {http://eudml.org/doc/91436},
volume = {30},
year = {1989},
}

TY - JOUR
AU - Thiemann, Hanns
TI - The relation between homotopy limits and Bauer's shape singular complex
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1989
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 30
IS - 2
SP - 157
EP - 165
LA - eng
KW - compact metric space; homotopy limit; (strong) shape singular complex; weak homotopy equivalence; strong shape equivalent
UR - http://eudml.org/doc/91436
ER -

References

top
  1. 1 F.W. Bauer, A shape theory with singular homology, Pacific J. Math.64 (1976), 25-65. Zbl0346.55014MR436130
  2. 2 F.W. Bauer, Duality in manifolds, Ann. di Mate. pura ed appl.136 (1984), 241-302. Zbl0564.55001MR765925
  3. 3 A.K. Bousfield & D.M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math.304, Springer (1972). Zbl0259.55004MR365573
  4. 4 F.W. Cathey, Strong shape theory, Lecture Notes in Math.870, Springer (1981), 215-238. Zbl0473.55011MR643532
  5. 5 D.A. Edwards & R. Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Ann. of Math.101 (1975), 521-535. Correction 104 (1976), 389. Zbl0334.57007MR375330
  6. 6 D.A. Edwards & H.M. Hastings, Cech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math.542, Springer (1976). Zbl0334.55001MR428322
  7. 7 A. Koyama, Coherent singular complexes in strong shape theory, Tsukuba J. Math.8-2 (1984), 261-293. Zbl0564.55007MR767961
  8. 8 Yu T. Lisica, Strong shape theory and Steenrod-Sitnikov homology (Russian), Sibirski Mat. Z.24 (1983), 81-99. Zbl0527.55015MR713586
  9. 9 G.W. Whitehead, Elements of Homotopy Theory, Berlin1978. Zbl0406.55001MR516508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.