Approximation axiomatique à la théorie du bordisme

R. Ayala; E. Dominguez; A. Quintero

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1989)

  • Volume: 30, Issue: 3, page 189-212
  • ISSN: 1245-530X

How to cite

top

Ayala, R., Dominguez, E., and Quintero, A.. "Approximation axiomatique à la théorie du bordisme." Cahiers de Topologie et Géométrie Différentielle Catégoriques 30.3 (1989): 189-212. <http://eudml.org/doc/91439>.

@article{Ayala1989,
author = {Ayala, R., Dominguez, E., Quintero, A.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {bordism theory},
language = {fre},
number = {3},
pages = {189-212},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Approximation axiomatique à la théorie du bordisme},
url = {http://eudml.org/doc/91439},
volume = {30},
year = {1989},
}

TY - JOUR
AU - Ayala, R.
AU - Dominguez, E.
AU - Quintero, A.
TI - Approximation axiomatique à la théorie du bordisme
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1989
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 30
IS - 3
SP - 189
EP - 212
LA - fre
KW - bordism theory
UR - http://eudml.org/doc/91439
ER -

References

top
  1. 1 E. Akin, Stiefel-Whitney homology classes and bordism, Trans. A.M.S.205 (1975), 341-359. Zbl0369.57006MR358829
  2. 2 S. Buoncristino, C. Rourke& B. Sanderson, A geometric approach to Homology Theory. Lecture Notes Ser. 18, Cambridge Univ. Press, 1976. Zbl0315.55002MR413113
  3. 3 Z. Cerin, On various relative proper homotopy groups, Tsukuba J. Math.4-2 (1980), 177-202. Zbl0469.55011MR623435
  4. 4 P.E. Conner& E.E. Floyd, Differentiable periodic maps, Ergeb. Ser. 33, Springer1964. Zbl0125.40103MR176478
  5. 5 E. Dominguez, Grupos de seudobordismo, Rev. Acad. Cienc. Zaragoza30 (1975), 5-16. Zbl0318.57041MR407849
  6. 6 E. Dominguez.Axiomas para una teoria de bordismo singular, Rev. Acad. Cienc. Madrid70 (1976), 575-582. 
  7. 7 E. Dominguez, Bordisme infini, Seminar on Foliations, Jagiellonian University, Krakow (1983), 28-34. 
  8. 8 H. Herrlich & G.E. Strecker, Category Theory, Allyn & Bacon1973. Zbl0265.18001MR349791
  9. 9 I. Madsen & J. Milgram, The classifying spaces for surgery, and cobordism of manifolds, Princeton Univ. Press1979. Zbl0446.57002MR548575
  10. 10 C. McCrory, Geometric homology operations, Studies in Algebraic Topology5, Acad. Press (1979), 119-141. Zbl0454.55014MR527247
  11. 11 A. Quintero.Un ejemplo de teoria de bordismo equivalente al PL-bordismo. Rev. Acad. Cienc. Zaragoza38 (1983). 15-20. Zbl0557.57015
  12. 12 A. Quintero.Un ejemplo de teoria de bordismo sin pushouts. Actas X Jorn. Hispano-Lusas de Matematicas, Sec. Topol., Murcia (1985). 106-111. 
  13. 13 A. Quintero, Algunos resultados sobre el bordismo de las variedades de homologia. Rev. Real Acad. Cienc.Madrid81 (1987). 73-85. Zbl0635.57012
  14. 14 J. Sancho, Bordismo multivaluado (En préparation). 
  15. 15 L. Siebenmann.Topological manifolds, Proc. I.C.M. vol. 2, Gauthiers-Villars (1971). 133-163. Zbl0224.57001MR423356
  16. 16 R. Stong.Notes on cobordism theory, Princeton Univ. Press1968. Zbl0181.26604MR248858
  17. 17 W. Strother.Continuous multivaluated functions, Bol. Soc. Sao Paulo10 (1958). 87-110. Zbl0097.38602MR122961
  18. 18 M. Takahashi.The ordinary Z2-homology and singular bordism theories. J. Math. Soc. Japan30 (1978), 433-446. Zbl0388.55005MR494069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.