Functionally Hausdorff spaces

Harriet Lazowick Lord

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1989)

  • Volume: 30, Issue: 3, page 247-256
  • ISSN: 1245-530X

How to cite

top

Lazowick Lord, Harriet. "Functionally Hausdorff spaces." Cahiers de Topologie et Géométrie Différentielle Catégoriques 30.3 (1989): 247-256. <http://eudml.org/doc/91442>.

@article{LazowickLord1989,
author = {Lazowick Lord, Harriet},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {functionally Hausdorff spaces; epimorphisms; regular morphisms; factorization structure},
language = {eng},
number = {3},
pages = {247-256},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Functionally Hausdorff spaces},
url = {http://eudml.org/doc/91442},
volume = {30},
year = {1989},
}

TY - JOUR
AU - Lazowick Lord, Harriet
TI - Functionally Hausdorff spaces
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1989
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 30
IS - 3
SP - 247
EP - 256
LA - eng
KW - functionally Hausdorff spaces; epimorphisms; regular morphisms; factorization structure
UR - http://eudml.org/doc/91442
ER -

References

top
  1. 1 D. Dikranjan & E. Giuli, Closure operators induced by topological epireflections, Coll. Math. Soc. J. Bolyai, Top. & Appl.41. EGER (Hungary). 1983. Zbl0601.54016
  2. 2 D. Dikranjan & E. Giuli.Closure operators I, Top. & Appl.27 (1987). 129-143. Zbl0634.54008MR911687
  3. 3 D. Dikranjan, E. Giuli & A. Tozzi, Topological categories and closure operators, Preprint. Zbl0657.18003MR953772
  4. 4 E. Giuli & M. Husek.A diagonal theorem for epireflective subcategories of Top and cowell-poweredness. Ann. di Mate. Pura e Appl.. to appear. Zbl0617.54006
  5. 5 E. Giuli, S. Mantovani & W. Tholen, Objects with closed diagonals, J. Pure Appl. Algebra, to appear. Zbl0651.18002MR941895
  6. 6 H. Herrlich, G. Salicrup & G.E. Strecker, Factorizations, denseness. separation and relatively compact objects, Top. & Appl.27 (1987), 157-169. Zbl0629.18003MR911689
  7. 7 H. Herrlich & G.E. Strecker, Category Theory, Heldermann. Berlin1979. Zbl0437.18001MR571016
  8. 8 H. Lord, Factorizations, M-separation and extremal-epireflective subcategories, Top. & Appl. 28 (1988), 241-253. Zbl0647.18001MR931526
  9. 9 D. Pumplün & H. Röhrl, Separated totally convex spaces, Man. Math.50 (1985), 145-183. Zbl0594.46064MR784142
  10. 10 S. Salbany, Reflective subcategories and closure operators, Lecture Notes in Math.540, Springer (1975), 548-565. Zbl0335.54003MR451186
  11. 11 J. Schröder.Epi und extremer Mono in T2a. Arch. Math.25 (1974), 561-565. Zbl0301.18001MR385789
  12. 12 L.A. Steen& J.A. SeebachJr.. Counterexamples in Topology. Springer. 1978. Zbl0386.54001MR507446

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.