Compact objects surjectivity of epimorphisms and compactifications

Gabriele Castellini

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1990)

  • Volume: 31, Issue: 1, page 53-65
  • ISSN: 1245-530X

How to cite

top

Castellini, Gabriele. "Compact objects surjectivity of epimorphisms and compactifications." Cahiers de Topologie et Géométrie Différentielle Catégoriques 31.1 (1990): 53-65. <http://eudml.org/doc/91452>.

@article{Castellini1990,
author = {Castellini, Gabriele},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {compact object; abstract closure operators; compactness; Hausdorffness; surjectivity of epimorphisms; abelian groups; topological spaces; compactification},
language = {eng},
number = {1},
pages = {53-65},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Compact objects surjectivity of epimorphisms and compactifications},
url = {http://eudml.org/doc/91452},
volume = {31},
year = {1990},
}

TY - JOUR
AU - Castellini, Gabriele
TI - Compact objects surjectivity of epimorphisms and compactifications
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1990
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 31
IS - 1
SP - 53
EP - 65
LA - eng
KW - compact object; abstract closure operators; compactness; Hausdorffness; surjectivity of epimorphisms; abelian groups; topological spaces; compactification
UR - http://eudml.org/doc/91452
ER -

References

top
  1. 1 G. Castellini, Closure operators, monomorphisms and epimorphisms in categories of groups, Cahiers Top. et Géom. Diff. Cat.XXVII-2 (1986). 151-167. Zbl0592.18001MR850530
  2. 2 G. Castellini, Closure operators and functorial topologies, J. Pure & Appl. Algebra55 (1988), 251-259. Zbl0659.18006MR970694
  3. 3 G. Castellini, Hereditary and weakly hereditary closure operators in abelian groups, Preprint. Zbl0758.18002
  4. 4 G. Castellini & G.E. Strecker, Global closure operators versus subcategories. Quaest. Math. (to appear). Zbl0733.18001
  5. 5 D. Dikranjan& E. Giuli, Closure operators induced by topological epireflections, Coll. Math. Soc. J. Bolyai41 (1983), 233-246. Zbl0601.54016MR863906
  6. 6 D. Dikranjan & E. Giuli, Epimorphisms and co-well-poweredness of epireflective subcategories of TOP, Rend. Circolo Mat. Palermo. Suppl.6 (1984). 121-136. Zbl0588.54017MR782710
  7. 7 D. Dikranjan & E. Giuli, Closure operators I, Top. & its Appl.27 (1987), 129-143. Zbl0634.54008MR911687
  8. 8 D. Dikranjan, E. Giuli & A. Tozzi, Topological categories and closure operators, Preprint. Zbl0657.18003MR953772
  9. 9 T.H. Fay, Compact modules, Comm. Alg. (to appear). Zbl0653.16020MR939039
  10. 10 H. Herrlich & G.E. Strecker, Category Theory. 2nd edition, Heldermann, 1979. Zbl0437.18001MR571016
  11. 11 H., Herrlich G. Salicrup & G.E. Strecker, Factorizations, denseness, separation and relatively compact objects, Top. & its Appl.27 (1987). 157-169. Zbl0629.18003MR911689
  12. 12 S. Mowrka.Compactness and product spaces. Colloq. Math.7 (1959). 19-22. Zbl0093.36305MR117704
  13. 13 L.D. Nel & R.G. Wilson, Epireflections in the category of T0-spaces, Fund. Math.75 (1972). 69-74. Zbl0232.54018MR307164
  14. 14 A. Orsatti, Introduzione ai gruppi abeliani astratti e topologici. Quaderni dell'Un. Mat. Italiana8, Pitagora Ed., Bologna1978. Zbl0599.20085
  15. 15 S. Salbany.Reflective subcategories and closure operators, Lecture Notes in Math.540. Springer (1976). 565-584. Zbl0335.54003MR451186
  16. 16 L. Skula, On a reflective subcategory of the category of all topological spaces, Trans. A. M.S.142 (1969). 37-41. Zbl0185.50401MR248718
  17. 17 L. Stramaccia, Some remarks on closure operators induced by topological epireflections. Preprint. 
  18. 18 L. Stramaccia, On regular and extremal monomorphisms in general I categories, Preprint. Zbl0657.18002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.