Relative derived functors and the homology of groups

Graham J. Ellis

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1990)

  • Volume: 31, Issue: 2, page 121-135
  • ISSN: 1245-530X

How to cite

top

Ellis, Graham J.. "Relative derived functors and the homology of groups." Cahiers de Topologie et Géométrie Différentielle Catégoriques 31.2 (1990): 121-135. <http://eudml.org/doc/91454>.

@article{Ellis1990,
author = {Ellis, Graham J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {normal subgroups; hyper-relative homology groups; Hopf formula; homology exact sequences},
language = {eng},
number = {2},
pages = {121-135},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Relative derived functors and the homology of groups},
url = {http://eudml.org/doc/91454},
volume = {31},
year = {1990},
}

TY - JOUR
AU - Ellis, Graham J.
TI - Relative derived functors and the homology of groups
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1990
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 31
IS - 2
SP - 121
EP - 135
LA - eng
KW - normal subgroups; hyper-relative homology groups; Hopf formula; homology exact sequences
UR - http://eudml.org/doc/91454
ER -

References

top
  1. 1 M. Barr & J. Beck, Homology and standard constructions, Lecture Notes in Math.80, Springer (1969), 245-335. Zbl0176.29003MR258917
  2. 2 R. Brown& G.J. Ellis, Hopf formulae for the higher homology of a group, Bull. London Math. Soc.20 (1988), 124-128. Zbl0611.20032MR924238
  3. 3 R. Brown & J.-L. Loday, Van Kampen Theorems for diagrams of spaces, Topology26 (3) (1987), 311-335. Zbl0622.55009MR899052
  4. 4 E.B. Curtis, Simplicial homotopy theory, Advances in Math.6 (1971), 107-204. Zbl0225.55002MR279808
  5. 5 Introduction to Seminar on triples and categorical homology theory, Lecture Notes in Math.80. Springer (1969). 
  6. 6 G.J. Ellis.Non-abelian exterior products of groups and exact sequences in the homology of groups, Glasgow Math. J.29 (1987), 13-19. Zbl0631.20040MR876146
  7. 7 G.J. Ellis.An algebraic derivation of a certain exact sequence, Galway Math. Preprint88/1 (1988). MR1029411
  8. 8 F. Keune, Homotopical algebra and algebraic K-theory, Thesis. Amsterdam1972. 
  9. 9 F. Keune.The relativisation of K2, J. Algebra54 (1978), 159-177. Zbl0403.18009MR511460
  10. 10 J.-L. Loday, Spaces with finitely many homotopy groups, J. Pure & Appl. Algebra24 (1982), 179-202. Zbl0491.55004MR651845
  11. 11 C. Miller.The second homology of a group. Proc. A.M.S.3 (1952), 588-595. Zbl0047.25703MR49191
  12. 12 G.S. Rinehart, Satellites and cohomology, J. Algebra12 (1969), 295-332: Errata. ibid.14 (1970), 125-127. Zbl0185.04203MR245647
  13. 13 A.G. Rodicio, A homological exact sequence associated with a family of normal subgroups, Cahiers Top. & Géom. Diff. Cat.. to appear. Zbl0632.20033
  14. 14 R.J. Stfiner, Resolutions of spaces by cubes of fibrations, J. London Math. Soc. (2) 34 (1986), 169-176. Zbl0576.55007MR859158

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.