Modules over a quantale and models for the operator in linear logic
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1994)
- Volume: 35, Issue: 4, page 329-333
- ISSN: 1245-530X
Access Full Article
topHow to cite
topReferences
top- [1] S. Abramsky and S. Vickers, Quantales, observational logic, and process semantics, Math. Structures in Comp. Sci., Vol.3, No. 2, 1993,161-228. Zbl0823.06011
- [2] M. Barr, *-Autonomous Categories, SpringerLecture Notes in Math. No. 752, 1979. Zbl0415.18008
- [3] M. Barr, *-autonomous categories and linear logic, Math. Structures in Comp. Sci., Vol.1, No. 2, 1991, 159-178. Zbl0777.18006
- [4] R. Blute, Linear logic, coherence and dinaturality, Theor. Comp. Sci.115, 1993, 3-41. Zbl0782.18001
- [5] R. Blute, P. Panangaden, and R. Seely, Holomorphic models of exponential types in linear logic, to appear in Proc. Math. Foun. of Prog. Semantics, Springer Lect. Notes in Comp. Sci.
- [6] J.Y. Girard, Linear logic, Theor. Comp. Sci.50, 1987, 1-102. Zbl0625.03037
- [7] R. Guitart, Calcul des relations inverses, Cah. de Top. et Géom. Diff. Vol. XVII, No. 1, 1977, 67-100. Zbl0381.18007
- [8] A. Joyal and M. Tierney, An Extension of the Galois Theory of Grothendieck, AMS Memoirs No. 309, Amer. Math. Soc., 1984. Zbl0541.18002
- [9] K. I. Rosenthal, Quantales and theirApplications, Pitman Research Notes in Math. No. 234, Longman, Scientific and Technical, 1990. Zbl0703.06007
- [10] K.I. Rosenthal, *-autonomous categories of bimodules, to appear in Jour. Pure Appl. Alg. Zbl0819.18005
- [11] K.I. RosenthalThe Theory of Quantaloids, in preparation Zbl0845.18003
- [12] R. Seely, Linear logic, *-autonomous categories, and cofree algebras, in Categories in Computer Science and Logic, Cont. Math. Vol. 92, Amer. Math. Soc., 1989, 371-382. Zbl0674.03007