Orthogonality and closure operators

Lurdes Sousa

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1995)

  • Volume: 36, Issue: 4, page 323-343
  • ISSN: 1245-530X

How to cite

top

Sousa, Lurdes. "Orthogonality and closure operators." Cahiers de Topologie et Géométrie Différentielle Catégoriques 36.4 (1995): 323-343. <http://eudml.org/doc/91567>.

@article{Sousa1995,
author = {Sousa, Lurdes},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {orthogonal hull; reflective subcategories; reflective hull; orthogonal closure operator},
language = {eng},
number = {4},
pages = {323-343},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Orthogonality and closure operators},
url = {http://eudml.org/doc/91567},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Sousa, Lurdes
TI - Orthogonality and closure operators
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1995
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 36
IS - 4
SP - 323
EP - 343
LA - eng
KW - orthogonal hull; reflective subcategories; reflective hull; orthogonal closure operator
UR - http://eudml.org/doc/91567
ER -

References

top
  1. [1] J. Adámek, H. Herrlich and G.E. Strecher, Abstract and Concrete Categories, John Wiley and Sons, Inc., New York1990. Zbl0695.18001MR1051419
  2. [2] J. Adámek and J. Rosický, Intersections of reflective subcategories, Proc. Amer. Math. Soc.103 (1988), 710-712. Zbl0675.18002MR947643
  3. [3] D. Dikranjan and E. Giuli, Closure operators I, Top. and its Appl.27 (1987), 129-143. Zbl0634.54008MR911687
  4. [4] D. Dikranjan and E. Giuli, Urysohn-closed spaces, old and new, preprint. Zbl0658.54015
  5. [5] D. Dikranjan, E. Giuli and W. Tholen, Closure operators II, in: Categorical Topology and its relstions to Analysis, Algebra and Combinatorics (Conference Proceedings, Prague1988), pp.297-335. MR1047909
  6. [6] P.J. Freyd and G.M. Kelly, Categories of continuous functors I, J. Pure Appl. Algebra2 (1972), 169-191. Zbl0257.18005MR322004
  7. [7] H. Herrlich and M. Hušek, Some open categorical problems in Top, Appl. Cat. Structures1 (1993), 1-19. Zbl0791.54012MR1245790
  8. [8] R.E. Hoffmann, Topological functors admitting generalized Cauchy-completions, in: Proc. Conf. "Categorical Topology, Manheim 1975", Lecture Notes in Math. 540 (1976), pp. 286-344. Zbl0421.18002MR644648
  9. [9] J.R. Isbell, Epimorphisms and dominions, in:Proc. Conf. Categorical Algebra (La Jolla1965), Springer-Verlag, Berlin-Heidelberg -New York1966, pp. 232-246. Zbl0194.01601MR209202
  10. [10] S. MacLane, Categories for the Working Mathematician, Springer-Verlag, Berlin-Heidelberg- New York1971. Zbl0705.18001MR354798
  11. [11] J. Rosický, Semi-initial completions, J. Pure Appl. Algebra40 (1986), 177-183. Zbl0587.18001MR830320
  12. [12] J. Rosický and W. Tholen, Orthogonal and prereflective subcategories, Cah. Top. Géom. Diff. Cat.29 (1988), 203-215. Zbl0669.18001MR975373
  13. [13] S. Salbany, Reflective subcategories and closure operators, in: Proc. Conf. "Categorical Topology, Manheim 1975", Lecture Notes in Math. 540 (1976), pp. 548-565. Zbl0335.54003MR451186
  14. [14] M. Sobral, Absolutely closed spaces and categories of algebras, Portugaliae Math.47 (1990), 341-351. Zbl0732.18001MR1090472
  15. [15] L. Sousa, Solid hulls of concrete categories, submitted. Zbl0824.18002
  16. [16] W. Tholen, Factorizations, localizations, and the orthogonal sub-category problem, Math. Nachr.114 (1983), 63-85. Zbl0553.18003MR745048
  17. [17] W. Tholen, Reflective subcategories, Top. and its Appl.27 (1987), 201-212. Zbl0629.18004MR911692
  18. [18] T. Trnková, J. Adámek and J. Rosický, Topological reflections revisited, Proc. of the Amer. Math. Soc.108 (1990), 605-612. Zbl0694.18006MR987614

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.