Central extensions and reciprocity laws

Jean-Luc Brylinski

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1997)

  • Volume: 38, Issue: 3, page 193-215
  • ISSN: 1245-530X

How to cite

top

Brylinski, Jean-Luc. "Central extensions and reciprocity laws." Cahiers de Topologie et Géométrie Différentielle Catégoriques 38.3 (1997): 193-215. <http://eudml.org/doc/91592>.

@article{Brylinski1997,
author = {Brylinski, Jean-Luc},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {group action; group extensions; fixed points; groupoid; quadratic reciprocity law; Atiyah-Bott's fixed point theorem; holomorphic line bundle; Kaehler manifold},
language = {eng},
number = {3},
pages = {193-215},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Central extensions and reciprocity laws},
url = {http://eudml.org/doc/91592},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Brylinski, Jean-Luc
TI - Central extensions and reciprocity laws
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1997
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 38
IS - 3
SP - 193
EP - 215
LA - eng
KW - group action; group extensions; fixed points; groupoid; quadratic reciprocity law; Atiyah-Bott's fixed point theorem; holomorphic line bundle; Kaehler manifold
UR - http://eudml.org/doc/91592
ER -

References

top
  1. [1] E. Arbarello, C. DeConcini and V. Kac, The infinite wedge representation and the reciprocity law for an algebraic curve, Theta Functions, Proc. Symp. Pure Math. vol 49 Part I, Amer. Math. Soc. (1987), 171-190 Zbl0699.22028MR1013132
  2. [2] M.F. Atiyah and R. Bott, Lefschetz fixed point formula for elliptic complexes: II Applications, Ann. Math.88(1968), 451-491 Zbl0167.21703MR232406
  3. [3] J-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Math. vol. 107 (1993) Zbl0823.55002MR1197353
  4. [4] L. Jeffrey, D. Phil.Dissertation, Oxford Univ. (1991) 
  5. [5] M. Kapranov, Analogies between the Langlands correspondence and topological quantum field theory, Functional Analysis at the Eve of the 21st Century. In Honor of the Eightieth Birthday of I. M. Gelfand vol. I, Progress in Math. vol. 132Birkhaüser, 119-152 Zbl0858.11062MR1373001
  6. [6] B. Kostant, Quantization and unitary representations, Part I.: Prequantization,Lecture Notes in Math. vol. 170 (1970), 87-208 Zbl0223.53028MR294568
  7. [7] T. Kubota, Topological coverings of SL(2) over a local field, J. Math. Soc. Japan19 (1967), 114-121 Zbl0166.29603MR204422
  8. [8] G. Lion and M. Vergne, The Weil Representation, Maslov Index and Theta Series, Progress in Math. vol. 6, Birkhaiiser (1980) Zbl0444.22005MR573448
  9. [9] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semisimples déployés, Ann. Sci. Ec. Norm. Sup.2 (1969), 1-62 Zbl0261.20025MR240214
  10. [10] A. Pressley and G. Segal, Loop Groups, Oxford Univ. Press (1986) Zbl0618.22011MR900587
  11. [11] J-P. Serre, A course in Arithmetic, Springer Verlag (1973) Zbl0432.10001MR344216
  12. [12] R. Steinberg, Générateurs, relations et revêtements de groupes algébriques, Colloque Théorie des Groupes Algébriques, CBRM, Bruxelles (1962), 113-127 Zbl0272.20036MR153677
  13. [13] J. Tate, Fourier analysis in number fields and Hecke's zeta functions, Ph. D. Dissertation, Princeton Univ. (1950), published in J.W.S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press (1967), 305-347 MR217026
  14. [14] A. Weil, Sur certains groupes d'operateurs unitaires, Acta Math.111 (1976), 143-211 Zbl0203.03305MR165033
  15. [15] A. Weinstein, Cohomology of symplectorraorphism groups and critical values of hamiltonians, Math. Z.201 (1989), 75-82 Zbl0644.57024MR990190

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.