Central extensions and reciprocity laws
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1997)
- Volume: 38, Issue: 3, page 193-215
- ISSN: 1245-530X
Access Full Article
topHow to cite
topBrylinski, Jean-Luc. "Central extensions and reciprocity laws." Cahiers de Topologie et Géométrie Différentielle Catégoriques 38.3 (1997): 193-215. <http://eudml.org/doc/91592>.
@article{Brylinski1997,
author = {Brylinski, Jean-Luc},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {group action; group extensions; fixed points; groupoid; quadratic reciprocity law; Atiyah-Bott's fixed point theorem; holomorphic line bundle; Kaehler manifold},
language = {eng},
number = {3},
pages = {193-215},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Central extensions and reciprocity laws},
url = {http://eudml.org/doc/91592},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Brylinski, Jean-Luc
TI - Central extensions and reciprocity laws
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1997
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 38
IS - 3
SP - 193
EP - 215
LA - eng
KW - group action; group extensions; fixed points; groupoid; quadratic reciprocity law; Atiyah-Bott's fixed point theorem; holomorphic line bundle; Kaehler manifold
UR - http://eudml.org/doc/91592
ER -
References
top- [1] E. Arbarello, C. DeConcini and V. Kac, The infinite wedge representation and the reciprocity law for an algebraic curve, Theta Functions, Proc. Symp. Pure Math. vol 49 Part I, Amer. Math. Soc. (1987), 171-190 Zbl0699.22028MR1013132
- [2] M.F. Atiyah and R. Bott, Lefschetz fixed point formula for elliptic complexes: II Applications, Ann. Math.88(1968), 451-491 Zbl0167.21703MR232406
- [3] J-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Math. vol. 107 (1993) Zbl0823.55002MR1197353
- [4] L. Jeffrey, D. Phil.Dissertation, Oxford Univ. (1991)
- [5] M. Kapranov, Analogies between the Langlands correspondence and topological quantum field theory, Functional Analysis at the Eve of the 21st Century. In Honor of the Eightieth Birthday of I. M. Gelfand vol. I, Progress in Math. vol. 132Birkhaüser, 119-152 Zbl0858.11062MR1373001
- [6] B. Kostant, Quantization and unitary representations, Part I.: Prequantization,Lecture Notes in Math. vol. 170 (1970), 87-208 Zbl0223.53028MR294568
- [7] T. Kubota, Topological coverings of SL(2) over a local field, J. Math. Soc. Japan19 (1967), 114-121 Zbl0166.29603MR204422
- [8] G. Lion and M. Vergne, The Weil Representation, Maslov Index and Theta Series, Progress in Math. vol. 6, Birkhaiiser (1980) Zbl0444.22005MR573448
- [9] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semisimples déployés, Ann. Sci. Ec. Norm. Sup.2 (1969), 1-62 Zbl0261.20025MR240214
- [10] A. Pressley and G. Segal, Loop Groups, Oxford Univ. Press (1986) Zbl0618.22011MR900587
- [11] J-P. Serre, A course in Arithmetic, Springer Verlag (1973) Zbl0432.10001MR344216
- [12] R. Steinberg, Générateurs, relations et revêtements de groupes algébriques, Colloque Théorie des Groupes Algébriques, CBRM, Bruxelles (1962), 113-127 Zbl0272.20036MR153677
- [13] J. Tate, Fourier analysis in number fields and Hecke's zeta functions, Ph. D. Dissertation, Princeton Univ. (1950), published in J.W.S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press (1967), 305-347 MR217026
- [14] A. Weil, Sur certains groupes d'operateurs unitaires, Acta Math.111 (1976), 143-211 Zbl0203.03305MR165033
- [15] A. Weinstein, Cohomology of symplectorraorphism groups and critical values of hamiltonians, Math. Z.201 (1989), 75-82 Zbl0644.57024MR990190
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.