Compact topologies on locally presentable categories

Panagis Karazeris

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1997)

  • Volume: 38, Issue: 3, page 227-255
  • ISSN: 1245-530X

How to cite

top

Karazeris, Panagis. "Compact topologies on locally presentable categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 38.3 (1997): 227-255. <http://eudml.org/doc/91594>.

@article{Karazeris1997,
author = {Karazeris, Panagis},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {locally presentable category; closure operator; Grothendieck topologies; Gabriel topologies},
language = {eng},
number = {3},
pages = {227-255},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Compact topologies on locally presentable categories},
url = {http://eudml.org/doc/91594},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Karazeris, Panagis
TI - Compact topologies on locally presentable categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1997
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 38
IS - 3
SP - 227
EP - 255
LA - eng
KW - locally presentable category; closure operator; Grothendieck topologies; Gabriel topologies
UR - http://eudml.org/doc/91594
ER -

References

top
  1. [1] J. Adamek and J. Rosicky, Reflections in Locally Presentable Categories, Archivum Matematicum (Brno), 25 (1989), 89-94. Zbl0742.18002MR1189203
  2. [2] B. Banaschewski, Another Look at the Localic Tychonoff Theorem, Comment. Mat. Univ. Carolinae29 (1988), 647-656. Zbl0667.54009MR982782
  3. [3] F. Borceux and M. Kelly, On Locales of Localizations, Journal of Pure and Applied Algebra, 46 (1987), 1-34. Zbl0614.18005MR894389
  4. [4] F. Borceux and M.C. Pedicchio, A Characterization of Quasitoposes, Journal ofAlgebra, 139, 2 (1991), 505-526. Zbl0737.18003MR1113788
  5. [5] F. Borceux and B. Veit, Continuous Grothendieck Topologies, Annales de la Societe Scient. Brussels, T100, I (1986), 31-42. Zbl0612.18005MR889732
  6. [6] F. Borceux and B. Veit, Subobject Classifiers for Algebraic Structures, Journal ofAlgebra, 112 (1988), 306-314. Zbl0636.18003MR926607
  7. [7] S. Fakir, Objects Algebriquement Clos et Injectifs dans les Categories Localement Presentables, Bull. Soc. Math. France, Memoir 42 (1975). Zbl0321.18007MR401879
  8. [8] P. Freyd and M. Kelly, Categories of Continuous Functors, Journal of Pure and Applied Algebra, 2 (1972),169-191. Zbl0257.18005MR322004
  9. [9] P. Gabriel and F. Ulmer, Lokal Prœsentierbare Kategorien, Springer Lecture Notes onMathematics, vol. 221 (1971). Zbl0225.18004
  10. [10] P.T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge (1982). Zbl0499.54001MR698074
  11. [11] P. Karazeris, The Frame of Compact Topologies on Locally Finitely Presentable Categories, Ph.D Thesis, Aarhus Universitet, Matematisk Institut (1992). 
  12. [12] A. Kock and G. Wraith, Lectures on Elementary Toposes, Matematisk Institut, Aarhus Universitet, Lecture Notes Series 30, (1971) Zbl0251.18015MR342578
  13. [13] F.W. Lawvere, Intrinsic Co-Heyting Boundaries and the Leibnitz Rule in Certain Toposes, in: A. Carboni, M. C. Peddichio, P. Rossolini (eds) Proceedings, Como 1990, Springer Lecture Notes on Mathematics, vol. 1488, (1992). Zbl0745.18002MR1173018
  14. [14] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Springer, Berlin (1992) Zbl0822.18001MR1300636
  15. [15] M. Makkai and A. Pitts, SomeResults on Locally Finitely Presentable Categories, TransactionsAmerican Math. Soc.299 (1987), 473-496. Zbl0615.18002MR869216
  16. [16] G. Monro, A Category-Theoretic Approach to Boolean-Valued Models of Set Theory, Journal of Pure and Applied Algebra, 42 (1986), 245-274. Zbl0626.03046MR857894
  17. [17] N. Popescu, Abelian Categories with Applications to Rings and Modules, Academic Press, New York (1973). Zbl0271.18006MR340375
  18. [18] M. Prest, Elementary Torsion Theories and Locally Finitely Presented Categories, Journal of Pure and Applied Algebra,18 (1980), 205-212. Zbl0453.18009MR585223
  19. [19] B. Stenström, Rings of Quotients Springer, Berlin (1975). Zbl0296.16001MR389953
  20. [20] W. Tholen, Filtered Colimits are Directed Colimits, Fachbereich Matematik und Informatik, Fern Universitat, 15 (1982), 149-152. 
  21. [21] F. Ulmer, On the Existence and Exactness of the Associated Sheaf Functor, Journal of Pure and Applied Algebra, 3 (1973), 295-306. Zbl0297.18005MR374231

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.