Compact topologies on locally presentable categories
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1997)
- Volume: 38, Issue: 3, page 227-255
- ISSN: 1245-530X
Access Full Article
topHow to cite
topKarazeris, Panagis. "Compact topologies on locally presentable categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 38.3 (1997): 227-255. <http://eudml.org/doc/91594>.
@article{Karazeris1997,
author = {Karazeris, Panagis},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {locally presentable category; closure operator; Grothendieck topologies; Gabriel topologies},
language = {eng},
number = {3},
pages = {227-255},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Compact topologies on locally presentable categories},
url = {http://eudml.org/doc/91594},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Karazeris, Panagis
TI - Compact topologies on locally presentable categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1997
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 38
IS - 3
SP - 227
EP - 255
LA - eng
KW - locally presentable category; closure operator; Grothendieck topologies; Gabriel topologies
UR - http://eudml.org/doc/91594
ER -
References
top- [1] J. Adamek and J. Rosicky, Reflections in Locally Presentable Categories, Archivum Matematicum (Brno), 25 (1989), 89-94. Zbl0742.18002MR1189203
- [2] B. Banaschewski, Another Look at the Localic Tychonoff Theorem, Comment. Mat. Univ. Carolinae29 (1988), 647-656. Zbl0667.54009MR982782
- [3] F. Borceux and M. Kelly, On Locales of Localizations, Journal of Pure and Applied Algebra, 46 (1987), 1-34. Zbl0614.18005MR894389
- [4] F. Borceux and M.C. Pedicchio, A Characterization of Quasitoposes, Journal ofAlgebra, 139, 2 (1991), 505-526. Zbl0737.18003MR1113788
- [5] F. Borceux and B. Veit, Continuous Grothendieck Topologies, Annales de la Societe Scient. Brussels, T100, I (1986), 31-42. Zbl0612.18005MR889732
- [6] F. Borceux and B. Veit, Subobject Classifiers for Algebraic Structures, Journal ofAlgebra, 112 (1988), 306-314. Zbl0636.18003MR926607
- [7] S. Fakir, Objects Algebriquement Clos et Injectifs dans les Categories Localement Presentables, Bull. Soc. Math. France, Memoir 42 (1975). Zbl0321.18007MR401879
- [8] P. Freyd and M. Kelly, Categories of Continuous Functors, Journal of Pure and Applied Algebra, 2 (1972),169-191. Zbl0257.18005MR322004
- [9] P. Gabriel and F. Ulmer, Lokal Prœsentierbare Kategorien, Springer Lecture Notes onMathematics, vol. 221 (1971). Zbl0225.18004
- [10] P.T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge (1982). Zbl0499.54001MR698074
- [11] P. Karazeris, The Frame of Compact Topologies on Locally Finitely Presentable Categories, Ph.D Thesis, Aarhus Universitet, Matematisk Institut (1992).
- [12] A. Kock and G. Wraith, Lectures on Elementary Toposes, Matematisk Institut, Aarhus Universitet, Lecture Notes Series 30, (1971) Zbl0251.18015MR342578
- [13] F.W. Lawvere, Intrinsic Co-Heyting Boundaries and the Leibnitz Rule in Certain Toposes, in: A. Carboni, M. C. Peddichio, P. Rossolini (eds) Proceedings, Como 1990, Springer Lecture Notes on Mathematics, vol. 1488, (1992). Zbl0745.18002MR1173018
- [14] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Springer, Berlin (1992) Zbl0822.18001MR1300636
- [15] M. Makkai and A. Pitts, SomeResults on Locally Finitely Presentable Categories, TransactionsAmerican Math. Soc.299 (1987), 473-496. Zbl0615.18002MR869216
- [16] G. Monro, A Category-Theoretic Approach to Boolean-Valued Models of Set Theory, Journal of Pure and Applied Algebra, 42 (1986), 245-274. Zbl0626.03046MR857894
- [17] N. Popescu, Abelian Categories with Applications to Rings and Modules, Academic Press, New York (1973). Zbl0271.18006MR340375
- [18] M. Prest, Elementary Torsion Theories and Locally Finitely Presented Categories, Journal of Pure and Applied Algebra,18 (1980), 205-212. Zbl0453.18009MR585223
- [19] B. Stenström, Rings of Quotients Springer, Berlin (1975). Zbl0296.16001MR389953
- [20] W. Tholen, Filtered Colimits are Directed Colimits, Fachbereich Matematik und Informatik, Fern Universitat, 15 (1982), 149-152.
- [21] F. Ulmer, On the Existence and Exactness of the Associated Sheaf Functor, Journal of Pure and Applied Algebra, 3 (1973), 295-306. Zbl0297.18005MR374231
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.