Categories of topological spaces with sufficiently many sequentially closed spaces
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1997)
- Volume: 38, Issue: 4, page 277-300
- ISSN: 1245-530X
Access Full Article
topHow to cite
topDikranjan, Dikran, and Pelant, Jan. "Categories of topological spaces with sufficiently many sequentially closed spaces." Cahiers de Topologie et Géométrie Différentielle Catégoriques 38.4 (1997): 277-300. <http://eudml.org/doc/91596>.
@article{Dikranjan1997,
author = {Dikranjan, Dikran, Pelant, Jan},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {sequentially closed objects},
language = {eng},
number = {4},
pages = {277-300},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Categories of topological spaces with sufficiently many sequentially closed spaces},
url = {http://eudml.org/doc/91596},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Dikranjan, Dikran
AU - Pelant, Jan
TI - Categories of topological spaces with sufficiently many sequentially closed spaces
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1997
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 38
IS - 4
SP - 277
EP - 300
LA - eng
KW - sequentially closed objects
UR - http://eudml.org/doc/91596
ER -
References
top- [AHS] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and concrete categories, Pure and Applied Mathematics, John Wiley and Sons, Inc., New York, 1990. Zbl0695.18001MR1051419
- [AU] P. Alexandroff and P. Urysohn, Mémoirs sur les espaces topologiques compacts, Verh. Akad. Wesentlich. Amsterdam14 (1929) 1-96. JFM55.0960.02
- [AF] A.V. Arhangel'skii and S. Franklin, Ordinal invariants for topological spaces, Mich. Math. J., 15 (1968) 313-320. Zbl0167.51102MR240767
- [Ba] B. Banaschewski, On the Weierstrass—Stone approximation theorem, Fund. Math.64 (1957) 249-252. Zbl0081.32801MR92931
- [B] S. Baron, Note on epi in To, Canad. Math. Bull., 11 (1968) 503-504. Zbl0167.20702MR235003
- [BPS] M. Berri, J. Porter and R.M. Stephenson, Jr. A survey of minimal topological spaces, in: General Topology and its Relation to Modern Analysis and Algebra, Proc. Kanpur Top. Conf. (Acad. Press, New York, 1970) 93-114. Zbl0235.54018MR278254
- [BD] D. Burke and van Douwen, On countably compact extensions of normal locally compact M-spaces, Set-theoretic topology, (G. M. Reed, ed.), Academic Press, New York, 1977, 81-89. Zbl0436.54023MR440506
- [D1] D. Dikranjan, Categories with unbounded epimorphic order, in Proc. Conf. L. Chakalov 1886-1986, Sofia, January 1986, 57-65.
- [D2] —, Semiregular Closure Operators and Epimorphisms in Topological Categories, Suppl. Rend. Circ. Mat. Palermo, Serie II, 29 (1992) 105-160. Zbl0782.54009MR1197168
- [DG1] —, —, Closure operators I, Topology Appl., 27 (1987) 129-143. Zbl0634.54008MR911687
- [DG2] —, —, S(n)-θ-closed spaces, Topology and Appl., 28 (1988) 59-74. Zbl0658.54015
- [DG3] —, —, Compactness; minimality and closedness with respect to a closure operator, Proceedings of the International Conference on Categorical Topology, Prague, 1988 (World Scientific, Singapore1989) 284-296. MR1047908
- [DGT] —, —, and W. Tholen, Closure operators II, Proceedings of the International Conference on Categorical Topology, Prague, 1988 (World Scientific, Singapore1989) 297-335. MR1047909
- [DGo] D. Dikranjan and I. Gotchev, Sequentially closed and absolutely closed spaces, Boll. U. M. I., (7) 1-B (1987) 849-860. Zbl0654.54016MR916297
- [DT] D. Dikranjan and W. Tholen, Categorical structure of closure operators with applications in Topology; Algebra and Discrete Mathematics, Mathematics and its Applications, vol. 346, Kluwer Academic Publishers, Dordrecht- Boston-London1995. Zbl0853.18002MR1368854
- [DTo] D. Dikranjan and A. Tonolo, On a characterization of linear compactness, Rivista di Matematica Pura ed Applicata, 17 (1995) 95-106. Zbl1006.18007MR1413023
- [DU] D. Dikranjan and V. Uspenskij, Categorically compact topological groups. Journal of Pure and Appl. Algebra, to appear. Zbl0887.22001
- [GH] E. Giuli and M. Husek, A diagonal theorem for epireflective subcategories of Top and cowellpoweredness, Ann. Mat. Pura ed Appl.145 (1986), 337-346. Zbl0617.54006MR886716
- [Go1] I. Gotchev, Sequentially P-closed spaces, Rend. Ist. Mat. Univ. Trieste, XX, n. 1 (1988) 1-17. Zbl0689.54013MR1013094
- [Go2] —, Topological spaces with no compactly determined extensions, Math. and Education in Mathematics, Proc. 17 Spring Conf. U. B. M., April 6-9, 1988, 151-155.
- [Hof] R.-E. Hoffmann, On weak Hausdorff spaces, Arch. Math.32 (1979) 487-505. Zbl0463.54016MR547371
- [H] H. Hong, Limit operators and reflective subcategories, Topo 72, II Pitsburg International Conference, Lect. Notes in Math.378 (Springer-Verlag, Berlin, 1973) 219-227. Zbl0293.54012MR365456
- [Mo] K. Morita, Countably-compactifiable spaces, Sci. Rep. Tokyo, Daigaku, Sec. A, 12 (1972) 7-15. Zbl0277.54024MR370507
- [N] T. Nogura, Countably compact extensions of topological spaces, Topol. Appl.15 (1983) 65-69. Zbl0496.54021MR676967
- [PV] J. Porter and C. Votaw, S(α) spaces and regular Hausdorff extensions, Pacific J. Math., 45 (1973) 327-345. Zbl0262.54020
- [S] S. Salbany, Reflective subcategories and closure operators, Lect. Notes in Math., 540 (Springer-Verlag, Berlin-Heidelberg -New York1976) 548-565. Zbl0335.54003MR451186
- [V1] H. Velichko, H-closed topological spaces, Mat. Sb.(N.S.), 70 (112) (1966) 98-112; Amer. Math. Soc. Transl.78, Ser. 2 (1969) 103-118. Zbl0183.27302MR198418
- [V2] G. Viglino, To-spaces, Notices Amer. Math. Soc.6 (1969) 846.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.