Categories of topological spaces with sufficiently many sequentially closed spaces

Dikran Dikranjan; Jan Pelant

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1997)

  • Volume: 38, Issue: 4, page 277-300
  • ISSN: 1245-530X

How to cite

top

Dikranjan, Dikran, and Pelant, Jan. "Categories of topological spaces with sufficiently many sequentially closed spaces." Cahiers de Topologie et Géométrie Différentielle Catégoriques 38.4 (1997): 277-300. <http://eudml.org/doc/91596>.

@article{Dikranjan1997,
author = {Dikranjan, Dikran, Pelant, Jan},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {sequentially closed objects},
language = {eng},
number = {4},
pages = {277-300},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Categories of topological spaces with sufficiently many sequentially closed spaces},
url = {http://eudml.org/doc/91596},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Dikranjan, Dikran
AU - Pelant, Jan
TI - Categories of topological spaces with sufficiently many sequentially closed spaces
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1997
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 38
IS - 4
SP - 277
EP - 300
LA - eng
KW - sequentially closed objects
UR - http://eudml.org/doc/91596
ER -

References

top
  1. [AHS] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and concrete categories, Pure and Applied Mathematics, John Wiley and Sons, Inc., New York, 1990. Zbl0695.18001MR1051419
  2. [AU] P. Alexandroff and P. Urysohn, Mémoirs sur les espaces topologiques compacts, Verh. Akad. Wesentlich. Amsterdam14 (1929) 1-96. JFM55.0960.02
  3. [AF] A.V. Arhangel'skii and S. Franklin, Ordinal invariants for topological spaces, Mich. Math. J., 15 (1968) 313-320. Zbl0167.51102MR240767
  4. [Ba] B. Banaschewski, On the Weierstrass—Stone approximation theorem, Fund. Math.64 (1957) 249-252. Zbl0081.32801MR92931
  5. [B] S. Baron, Note on epi in To, Canad. Math. Bull., 11 (1968) 503-504. Zbl0167.20702MR235003
  6. [BPS] M. Berri, J. Porter and R.M. Stephenson, Jr. A survey of minimal topological spaces, in: General Topology and its Relation to Modern Analysis and Algebra, Proc. Kanpur Top. Conf. (Acad. Press, New York, 1970) 93-114. Zbl0235.54018MR278254
  7. [BD] D. Burke and van Douwen, On countably compact extensions of normal locally compact M-spaces, Set-theoretic topology, (G. M. Reed, ed.), Academic Press, New York, 1977, 81-89. Zbl0436.54023MR440506
  8. [D1] D. Dikranjan, Categories with unbounded epimorphic order, in Proc. Conf. L. Chakalov 1886-1986, Sofia, January 1986, 57-65. 
  9. [D2] —, Semiregular Closure Operators and Epimorphisms in Topological Categories, Suppl. Rend. Circ. Mat. Palermo, Serie II, 29 (1992) 105-160. Zbl0782.54009MR1197168
  10. [DG1] —, —, Closure operators I, Topology Appl., 27 (1987) 129-143. Zbl0634.54008MR911687
  11. [DG2] —, —, S(n)-θ-closed spaces, Topology and Appl., 28 (1988) 59-74. Zbl0658.54015
  12. [DG3] —, —, Compactness; minimality and closedness with respect to a closure operator, Proceedings of the International Conference on Categorical Topology, Prague, 1988 (World Scientific, Singapore1989) 284-296. MR1047908
  13. [DGT] —, —, and W. Tholen, Closure operators II, Proceedings of the International Conference on Categorical Topology, Prague, 1988 (World Scientific, Singapore1989) 297-335. MR1047909
  14. [DGo] D. Dikranjan and I. Gotchev, Sequentially closed and absolutely closed spaces, Boll. U. M. I., (7) 1-B (1987) 849-860. Zbl0654.54016MR916297
  15. [DT] D. Dikranjan and W. Tholen, Categorical structure of closure operators with applications in Topology; Algebra and Discrete Mathematics, Mathematics and its Applications, vol. 346, Kluwer Academic Publishers, Dordrecht- Boston-London1995. Zbl0853.18002MR1368854
  16. [DTo] D. Dikranjan and A. Tonolo, On a characterization of linear compactness, Rivista di Matematica Pura ed Applicata, 17 (1995) 95-106. Zbl1006.18007MR1413023
  17. [DU] D. Dikranjan and V. Uspenskij, Categorically compact topological groups. Journal of Pure and Appl. Algebra, to appear. Zbl0887.22001
  18. [GH] E. Giuli and M. Husek, A diagonal theorem for epireflective subcategories of Top and cowellpoweredness, Ann. Mat. Pura ed Appl.145 (1986), 337-346. Zbl0617.54006MR886716
  19. [Go1] I. Gotchev, Sequentially P-closed spaces, Rend. Ist. Mat. Univ. Trieste, XX, n. 1 (1988) 1-17. Zbl0689.54013MR1013094
  20. [Go2] —, Topological spaces with no compactly determined extensions, Math. and Education in Mathematics, Proc. 17 Spring Conf. U. B. M., April 6-9, 1988, 151-155. 
  21. [Hof] R.-E. Hoffmann, On weak Hausdorff spaces, Arch. Math.32 (1979) 487-505. Zbl0463.54016MR547371
  22. [H] H. Hong, Limit operators and reflective subcategories, Topo 72, II Pitsburg International Conference, Lect. Notes in Math.378 (Springer-Verlag, Berlin, 1973) 219-227. Zbl0293.54012MR365456
  23. [Mo] K. Morita, Countably-compactifiable spaces, Sci. Rep. Tokyo, Daigaku, Sec. A, 12 (1972) 7-15. Zbl0277.54024MR370507
  24. [N] T. Nogura, Countably compact extensions of topological spaces, Topol. Appl.15 (1983) 65-69. Zbl0496.54021MR676967
  25. [PV] J. Porter and C. Votaw, S(α) spaces and regular Hausdorff extensions, Pacific J. Math., 45 (1973) 327-345. Zbl0262.54020
  26. [S] S. Salbany, Reflective subcategories and closure operators, Lect. Notes in Math., 540 (Springer-Verlag, Berlin-Heidelberg -New York1976) 548-565. Zbl0335.54003MR451186
  27. [V1] H. Velichko, H-closed topological spaces, Mat. Sb.(N.S.), 70 (112) (1966) 98-112; Amer. Math. Soc. Transl.78, Ser. 2 (1969) 103-118. Zbl0183.27302MR198418
  28. [V2] G. Viglino, To-spaces, Notices Amer. Math. Soc.6 (1969) 846. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.