Fibrations and classifying spaces : an axiomatic approach I

Peter I. Booth

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1998)

  • Volume: 39, Issue: 2, page 83-116
  • ISSN: 1245-530X

How to cite

top

Booth, Peter I.. "Fibrations and classifying spaces : an axiomatic approach I." Cahiers de Topologie et Géométrie Différentielle Catégoriques 39.2 (1998): 83-116. <http://eudml.org/doc/91604>.

@article{Booth1998,
author = {Booth, Peter I.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {universal fibration; classification of fibrations},
language = {eng},
number = {2},
pages = {83-116},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Fibrations and classifying spaces : an axiomatic approach I},
url = {http://eudml.org/doc/91604},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Booth, Peter I.
TI - Fibrations and classifying spaces : an axiomatic approach I
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1998
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 39
IS - 2
SP - 83
EP - 116
LA - eng
KW - universal fibration; classification of fibrations
UR - http://eudml.org/doc/91604
ER -

References

top
  1. B1 P.I. Booth, Local to global properties in the theory of fibrations, Cahiers de Topologie et Géométrie Différentielle Catégoriques, XXXIV-2 (1993), 127-151. Zbl0782.55006MR1223656
  2. B2 P.I. Booth, Fibrations and classifying spaces: an axiomatic approach II (to appear, Cahiers de Topologie et Géométrie Différentielle Catégoriques). Zbl0917.55009MR1641846
  3. B3 P.I. Booth, Fibrations and classifying spaces: overview and examples (to appear) Zbl0991.55010
  4. B4 P.I. Booth, On the geometric bar construction and the Brown representability theorem (to appear, Cahiers de Topologie et Géométrie Différentielle Catégoriques). Zbl0926.55011MR1663342
  5. B(E) E.H. Brown, Abstract homotopy theory, Trans. Amer. Math. Soc.119 (1965), 79-85. Zbl0129.15301MR182970
  6. B(R) R. Brown, Topology: a geometric account of general topology, homotopy types and the fundamental groupoid, Ellis Horwood, Chichester, 1988. Zbl0655.55001MR984598
  7. FP R. Fritsch and R.A. Piccinini, Cellular structures in topology, Cambridge University Press, Cambridge, 1990. Zbl0837.55001MR1074175
  8. F.M. Fuchs, A note on mapping cylinders, Mich. Math. J.18, 289-290 (1971). Zbl0224.55015MR287537
  9. M J.P. May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. vol.155, Providence, 1975. Zbl0321.55033MR370579
  10. V1 R.M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. MathXXII (1971), 545-555. Zbl0237.54001MR300277
  11. V2 R.M. Vogt, A note on homotopy equivalences, Proc. Amer. Math. Soc.32 (1972), 627-629. Zbl0241.55009MR293632

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.