Heegard and regular genus agree for compact -manifolds
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1998)
- Volume: 39, Issue: 3, page 221-235
- ISSN: 1245-530X
Access Full Article
topHow to cite
topCristofori, Paola. "Heegard and regular genus agree for compact $3$-manifolds." Cahiers de Topologie et Géométrie Différentielle Catégoriques 39.3 (1998): 221-235. <http://eudml.org/doc/91608>.
@article{Cristofori1998,
author = {Cristofori, Paola},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {3-manifold; Heegaard genus; regular genus; crystallization},
language = {eng},
number = {3},
pages = {221-235},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Heegard and regular genus agree for compact $3$-manifolds},
url = {http://eudml.org/doc/91608},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Cristofori, Paola
TI - Heegard and regular genus agree for compact $3$-manifolds
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1998
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 39
IS - 3
SP - 221
EP - 235
LA - eng
KW - 3-manifold; Heegaard genus; regular genus; crystallization
UR - http://eudml.org/doc/91608
ER -
References
top- [1] P. Bandieri, A note on the genus of 3-manifolds with boundary, Ann. Univ. Ferrara - Sez. VII - Sc. Mat.XXXV (1989), 163-175 Zbl0713.57013MR1079586
- [2] P. Bandieri, Constructing n-manifolds from spines, to appear Zbl0912.57014MR1649950
- [3] M.R. Casali, An infinite class of bounded 4-manifolds having regular genus three, Boll. Un. Mat. Ital. (7) 10-A (1996), 279-303. Zbl0867.57014MR1405245
- [4] M.R. Casali, Classifying PL 5-manifolds by regular genus: the boundary case, Can. J. Math.49 (2) (1997), 193-211. Zbl0880.57008MR1447488
- [5] P. Cristofori - C. Gagliardi - L. Grasselli, Heegaard and regular genus of 3-manifolds with boundary, Revista Mat. Universidad Complutense Madrid8 (2) (1995), 379-398. Zbl0869.57026MR1367937
- [6] M. Ferri - C. Gagliardi - L. Grasselli, A graph-theoretical representation of PL-manifolds - A survey on crystallizations, Aequationes Math.31 (1986), 121-141. Zbl0623.57012MR867510
- [7] C. Gagliardi, A combinatorial characterization of 3-manifolds crystallisations, Boll. Un. Mat. Ital.16-A (1979), 441-449. Zbl0414.57004MR551367
- [8] C. Gagliardi, Regular imbeddings of edge-coloured graphs, Geom. Dedicata11 (1981), 397-414. Zbl0485.05026MR637916
- [9] C., GagliardiExtending the concept of genus to dimension n, Proc. Amer. Math. Soc.81 (1981), 473-481. Zbl0467.57004MR597666
- [10] C., GagliardiRegular genus: the boundary case, Geom. Dedicata22 (1987), 261-281. Zbl0618.57009MR887578
- [11] C., GagliardiThe only genus zero n-manifold is Sn, Proc. Amer. Math. Soc.85 (1982), 638-642. Zbl0522.57021MR660620
- [12] P. Heegaard, Forstudier til topologisk teori för de algebraiske Sammenhäeng, Nordiske Forlag Ernst Bojesen, Copenhagen (1898); french translation: Bull. Soc. Math. France44 (1916), 161-212.
- [13] P.J. Hilton - S. Wylie, An introduction to algebraic topology - Homology theory, Cambridge Univ. Press (1960). Zbl0091.36306MR115161
- [14] J.M. Montesinos, Representing 3-manifolds by a universal branching set, Math. Proc. Camb. Phil. Soc.94 (1983), 109-123. Zbl0535.57007MR704805
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.