Heegard and regular genus agree for compact 3 -manifolds

Paola Cristofori

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1998)

  • Volume: 39, Issue: 3, page 221-235
  • ISSN: 1245-530X

How to cite

top

Cristofori, Paola. "Heegard and regular genus agree for compact $3$-manifolds." Cahiers de Topologie et Géométrie Différentielle Catégoriques 39.3 (1998): 221-235. <http://eudml.org/doc/91608>.

@article{Cristofori1998,
author = {Cristofori, Paola},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {3-manifold; Heegaard genus; regular genus; crystallization},
language = {eng},
number = {3},
pages = {221-235},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Heegard and regular genus agree for compact $3$-manifolds},
url = {http://eudml.org/doc/91608},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Cristofori, Paola
TI - Heegard and regular genus agree for compact $3$-manifolds
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1998
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 39
IS - 3
SP - 221
EP - 235
LA - eng
KW - 3-manifold; Heegaard genus; regular genus; crystallization
UR - http://eudml.org/doc/91608
ER -

References

top
  1. [1] P. Bandieri, A note on the genus of 3-manifolds with boundary, Ann. Univ. Ferrara - Sez. VII - Sc. Mat.XXXV (1989), 163-175 Zbl0713.57013MR1079586
  2. [2] P. Bandieri, Constructing n-manifolds from spines, to appear Zbl0912.57014MR1649950
  3. [3] M.R. Casali, An infinite class of bounded 4-manifolds having regular genus three, Boll. Un. Mat. Ital. (7) 10-A (1996), 279-303. Zbl0867.57014MR1405245
  4. [4] M.R. Casali, Classifying PL 5-manifolds by regular genus: the boundary case, Can. J. Math.49 (2) (1997), 193-211. Zbl0880.57008MR1447488
  5. [5] P. Cristofori - C. Gagliardi - L. Grasselli, Heegaard and regular genus of 3-manifolds with boundary, Revista Mat. Universidad Complutense Madrid8 (2) (1995), 379-398. Zbl0869.57026MR1367937
  6. [6] M. Ferri - C. Gagliardi - L. Grasselli, A graph-theoretical representation of PL-manifolds - A survey on crystallizations, Aequationes Math.31 (1986), 121-141. Zbl0623.57012MR867510
  7. [7] C. Gagliardi, A combinatorial characterization of 3-manifolds crystallisations, Boll. Un. Mat. Ital.16-A (1979), 441-449. Zbl0414.57004MR551367
  8. [8] C. Gagliardi, Regular imbeddings of edge-coloured graphs, Geom. Dedicata11 (1981), 397-414. Zbl0485.05026MR637916
  9. [9] C., GagliardiExtending the concept of genus to dimension n, Proc. Amer. Math. Soc.81 (1981), 473-481. Zbl0467.57004MR597666
  10. [10] C., GagliardiRegular genus: the boundary case, Geom. Dedicata22 (1987), 261-281. Zbl0618.57009MR887578
  11. [11] C., GagliardiThe only genus zero n-manifold is Sn, Proc. Amer. Math. Soc.85 (1982), 638-642. Zbl0522.57021MR660620
  12. [12] P. Heegaard, Forstudier til topologisk teori för de algebraiske Sammenhäeng, Nordiske Forlag Ernst Bojesen, Copenhagen (1898); french translation: Bull. Soc. Math. France44 (1916), 161-212. 
  13. [13] P.J. Hilton - S. Wylie, An introduction to algebraic topology - Homology theory, Cambridge Univ. Press (1960). Zbl0091.36306MR115161
  14. [14] J.M. Montesinos, Representing 3-manifolds by a universal branching set, Math. Proc. Camb. Phil. Soc.94 (1983), 109-123. Zbl0535.57007MR704805

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.