A Priestley view of spatialization of frames

A. Pultr; J. Sichler

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2000)

  • Volume: 41, Issue: 3, page 225-238
  • ISSN: 1245-530X

How to cite

top

Pultr, A., and Sichler, J.. "A Priestley view of spatialization of frames." Cahiers de Topologie et Géométrie Différentielle Catégoriques 41.3 (2000): 225-238. <http://eudml.org/doc/91635>.

@article{Pultr2000,
author = {Pultr, A., Sichler, J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {locally compact space; Priestley duality; spatial frames},
language = {eng},
number = {3},
pages = {225-238},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A Priestley view of spatialization of frames},
url = {http://eudml.org/doc/91635},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Pultr, A.
AU - Sichler, J.
TI - A Priestley view of spatialization of frames
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2000
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 41
IS - 3
SP - 225
EP - 238
LA - eng
KW - locally compact space; Priestley duality; spatial frames
UR - http://eudml.org/doc/91635
ER -

References

top
  1. 1 B. Banaschewski, The duality of distributive continuous lattices, Canadian J. of Math.XXXII (1980), 385-394. Zbl0434.06011MR571932
  2. 2 B. Banaschewski and A. Pultr, Samuel compactification and completion of uniform frames, Math. Proc. Camb. Phil. Soc.108 (1990), 63-78. Zbl0733.54020MR1049760
  3. 3 K.H. Hofmann and J.D. Lawson, The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc.246 (1978), 285-310. Zbl0402.54043MR515540
  4. 4 J.R. Isbell, Function spaces and adjoints, Math. Scand.36 (1975), 317-339. Zbl0309.54016MR405340
  5. 5 P.T. Johnstone, "Stone Spaces", Cambridge University Press, Cambridge, 1982. Zbl0499.54001MR698074
  6. 6 P.T. Johnstone, Tychonoff's theorem without the axiom of choice, Fund. Math.113 (1981), 31-35. Zbl0503.54006MR641111
  7. 7 J.L. Kelley, The Tychonoff Product Theorem implies the Axiom of Choice, Fund. Math.37 (1950), 75-76. Zbl0039.28202MR39982
  8. 8 H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc.2 (1970), 186-190. Zbl0201.01802MR265242
  9. 9 H.A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc.24 (1972), 507-530. Zbl0323.06011MR300949
  10. 10 A. Pultr and J. Sichler, Frames in Priestley's duality, Cahiers de Top. et Géom. Diff. Cat.XXIX-3 (1988), 193-202. Zbl0666.54018MR975372
  11. 11 S. Vickers, "Topology via Logic", Cambrige Tracts in Theor. Comp. Sci., Number 5, Cambridge University Press, Cambridge, 1985. Zbl0668.54001MR1002193

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.