Géométrie de l'espace tangent sur l'hyperboloïde quantique

P. Akueson

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2001)

  • Volume: 42, Issue: 1, page 2-50
  • ISSN: 1245-530X

How to cite

top

Akueson, P.. "Géométrie de l'espace tangent sur l'hyperboloïde quantique." Cahiers de Topologie et Géométrie Différentielle Catégoriques 42.1 (2001): 2-50. <http://eudml.org/doc/91640>.

@article{Akueson2001,
author = {Akueson, P.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {quantum hyperboloid; braided geometry; quantum group; tangent space of quantum hyperboloid},
language = {fre},
number = {1},
pages = {2-50},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Géométrie de l'espace tangent sur l'hyperboloïde quantique},
url = {http://eudml.org/doc/91640},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Akueson, P.
TI - Géométrie de l'espace tangent sur l'hyperboloïde quantique
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2001
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 42
IS - 1
SP - 2
EP - 50
LA - fre
KW - quantum hyperboloid; braided geometry; quantum group; tangent space of quantum hyperboloid
UR - http://eudml.org/doc/91640
ER -

References

top
  1. [A] P. Akueson: Éléments de Géométrie tressée, Thèse de l'Université de Valenciennes (1998). 
  2. [AG] P. Akueson, D. Gurevich: Some aspects of braided geometry : differential calculus, tangent space, gauge theory, to appear in J.Phys.A., (1999). Zbl0945.58007MR1696901
  3. [BM] T. Brzezinski, S. Majid:Line bundles on quantum sphere, q-alg/9807052. 
  4. [DGK] J. Donin, D. Gurevich, S. Khoroshkin: Double quantization of CPn type orbits by generalized Verma modules, JGP,28 (1998) pp.384-406. Zbl0945.17003MR1658719
  5. [DGS] J. Donin, D. Gurevich, S. Shnider: Invariant quantization in one and two parameters on semisimple coadjoint orbits of simple Lie groups, J. Pure and App. Algebra100 (1995), pp.103-115. MR1344846
  6. [DGR] J. Donin, D. Gurevich, V. Rubtsov: Quantum hyperboloid and braided modules, Algèbre Non Commutative, Groupes quantiques et invariants, Société Mathématique de France, Collection séminaires et congrès, No 2 (1997), pp.103-118. Zbl0973.17502MR1601123
  7. [D] J. Donin: Double quantization on the coadjoint representation of sl(n), Czech J.of Physics, 47, (1997), pp. 1115-1122. Zbl0942.17006MR1615893
  8. [FRT] L. Faddeev, N. Reshetikhin, L. Takhtadhyan: Quantization of Lie groups and Lie algebras, Leningrad Math.J.1 (1990), pp.193-226. Zbl0715.17015MR1015339
  9. [GRR] D. Gurevich, A. Radul, V. Rubtsov: Noncommutative differential geometry and Yang-Baxter equation, Preprint. Publ. Math. IHES (1991). 
  10. [GP] D. Gurevich, D. Panyushev: On Poisson pairs associated to modified R-matrices, Duke Math.J.73 (1994), no.1. Zbl0824.58022MR1262206
  11. [DG] D. Gurevich, J. Donin: Braiding of the Lie algebra sl(2), Amer.Math.Soc.Transl.(2) 167 (1995), pp.23-36. Zbl0853.17009MR1343982
  12. [GV] D. Gurevich, L. Vainerman: Noncommutative analogues of q-special polynomials and a q-integral on a sphere, J.Phys.A. Math.Gen.31 (1998), pp.1771-1780. Zbl0904.33014MR1624601
  13. [G1] D. Gurevich: Algebraic aspects of the quantum Yang-Baxter equation, Leningrad. Math.J.2 (1991), pp. 801-828. Zbl0728.17012MR1080202
  14. [G2] D. Gurevich: Braided modules and reflection equations, Quantum groups and quantum spaces. Banach Center Publ, (40), Institut of Math, Polish Academy of Sciences, Warszawa1997, pp.99-109. Zbl0936.17014MR1481738
  15. [K] C. Kassel: Quantum groups, Graduate texts in mathematics, 155, (1995). Zbl0808.17003MR1321145
  16. [L] J. Lambek: Lectures on rings and modules, Blaisddell publishing company (1966). Zbl0143.26403MR419493
  17. [LS] V. Lyubashenko, A. Sudbery: Quantum Lie algebras of type An, q-alg /9510004. 
  18. [M] Sh. Majid: Foundations of quantum groups theory, Cambrige University Press, (1995). Zbl0857.17009MR1381692
  19. [P] P. Podlès: Quantum spheres, Lett.Math.Phys.14 (1987), pp.193-202. Zbl0634.46054MR919322
  20. [R] G. Rinehart: Differential forms for general commutative algebras, Trans.Amer.Math.Soc.108 (1963), pp.195-222. Zbl0113.26204MR154906
  21. [S1] J.P. Serre: Modules projectifs et espaces fibrés a fibre vectorielle, exp. 23, Séminaire Dubreil-Pisot, Algèbre et théorie des nombres, Secrétariat mathématique, Paris, 1958. Zbl0132.41202MR177011
  22. [S2] A. Sudbery: SUq(n) gauge theory, Phys.Letters B375 (1996), pp. 75-80. Zbl0997.81531MR1396485

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.