Rational nilpotent groups as subgroups of self-homotopy equivalences
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2001)
- Volume: 42, Issue: 2, page 137-153
- ISSN: 1245-530X
Access Full Article
topHow to cite
topPiccarreta, Salvina. "Rational nilpotent groups as subgroups of self-homotopy equivalences." Cahiers de Topologie et Géométrie Différentielle Catégoriques 42.2 (2001): 137-153. <http://eudml.org/doc/91643>.
@article{Piccarreta2001,
author = {Piccarreta, Salvina},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {rational homotopy; realization problem},
language = {eng},
number = {2},
pages = {137-153},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Rational nilpotent groups as subgroups of self-homotopy equivalences},
url = {http://eudml.org/doc/91643},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Piccarreta, Salvina
TI - Rational nilpotent groups as subgroups of self-homotopy equivalences
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2001
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 42
IS - 2
SP - 137
EP - 153
LA - eng
KW - rational homotopy; realization problem
UR - http://eudml.org/doc/91643
ER -
References
top- [1] M. Arkowitz, The Group of Self-Homotopy Equivalences - a survey, in: Groups of Self-Equivalences and Related Topics, Lectures Notes in Mathematics, Vol. 1425 (Springer, Berlin, 1990), 170-203. Zbl0713.55004MR1070585
- [2] M. Arkowitz, C.R. Curjel, Groups of Homotopy classes, Lectures Notes in Mathematics (Springer, Berlin, 1967). Zbl0131.20502MR214061
- [3] M. Arkowitz, C.R. Curjel, The group of Homotopy Equivalences of a Space, Bull. Amer. Math. Soc., 70 (1964), 293-296. Zbl0129.15401MR163313
- [4] M. Arkowitz, G. Lupton, Equivalence Classes of Homotopy-Associative Comultiplications of Finite Complexes, Journal of Pure and Applied Alg.102 (1995), 109-136. Zbl0862.57026MR1354057
- [5] M. Arkowitz, G. Lupton, On Finiteness of Subgroups of Self-Homotopy Equivalences, Contemp. Math.181 (1995), 1-25. Zbl0830.55010MR1320984
- [6] M. Arkowitz, G. Lupton, On the Nilpotency of Subgroups of Self-Homotopy Equivalences, Prog. in Math.136 (1996), 1-22. Zbl0851.55017MR1397718
- [7] G. Baumslag, Lecture Notes on Nilpotent groups, Regional Conference Series in Mathematics (American Mathematical Society, Providence, 1971). Zbl0241.20001MR283082
- [8] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, RealHomotopy Theory of Kähler Manifolds, Invent. Math., 29 (1975), 245-274. Zbl0312.55011MR382702
- [9] E. Dror-Farjoun, A. Zabrodsky, Unipotency and Nilpotency in Homotopy Equivalences, Topology, 18 (1979), 187-197. Zbl0417.55008MR546789
- [10] W.H. Greub, S. Halperin, J.K. Vanstone, Connections, curvature and cohomology, vol. III (Academic Press, New York, 1975). Zbl0372.57001
- [11] P. Griffiths, J. Morgan, Rational Homotopy Theory and Differential Forms, Progress in Math. Vol. 15 (Birkhäuser, Boston, 1981). Zbl0474.55001MR641551
- [12] F. Grunewald, J. O'Halloran, Nilpotent Groups and Unipotent Algebraic Groups, J. of Pure and Applied Algebra37 (1985), 299-313. Zbl0576.20019MR797867
- [13] F. Grunewald, R. Scharlau, A Note on Finitely Generated Torsion-free Nilpotent Groups of Class 2, J. Algebra58 (1979), 162-175. Zbl0406.20031MR535851
- [14] F. Grunewald, D. Segal, L. Sterling, Nilpotent Groups of Hirsch Length Six, Math. Z.179 (1982), 219-235. Zbl0497.20026MR645498
- [15] P. Hall, The Edmonton Notes on Nilpotent Groups. Queen Mary College, Mathematics Notes (Mathematics Department Queen Mary College, London, 1969). Zbl0211.34201MR283083
- [16] S. Halperin, J. Stasheff, Obstructions to Homotopy Equivalences, Adv. in Math.32 (1979), 233-279. Zbl0408.55009MR539532
- [17] P.J. Hilton, On the Homotopy Groups of the Union of Spheres, J. London Math. Soc.30 (1955), 154-172. Zbl0064.17301MR68218
- [18] P.J. Hilton, G. Mislin, J. Roitberg, Localization of Nilpotent Groups and Spaces, Notas de Matematica, 15 (North Holland, Amsterdam, 1975). Zbl0323.55016
- [19] K.I. Maruyama, Localization of a Certain Subgroups of Self-Homotopy Equivalences, Pac. J. of Math136 (1989), 293-301. Zbl0673.55006MR978616
- [20] K.-I. Maruyama, Finiteness Properties of Self-Homotopy Equivalences Inducing the Identity on Homology, Math. Proc. Camb. Phil. Soc., 108 (1990), 291-297. Zbl0718.55006MR1074715
- [21] J. Neisendorfer, T.J. Miller, Formal and Coformal Spaces, Illinois J. Math22 (1978), 565-580. Zbl0396.55011MR500938
- [22] J.-P. Serre, Lie Algebras and LieGroups (Benjamin, New York, 1965). Zbl0132.27803MR218496
- [23] D. Tanré, Homotopie Rationelle: Modèles de Chen, Quillen, Sullivan, Lectures Notes in Mathematics, Vol. 1025 (Springer, Berlin, 1983). Zbl0539.55001MR764769
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.