Symmetric monoidal closed structures in 𝑃𝑅𝐴𝑃

M. Sioen

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2001)

  • Volume: 42, Issue: 4, page 285-316
  • ISSN: 1245-530X

How to cite

top

Sioen, M.. "Symmetric monoidal closed structures in $\mathit {PRAP}$." Cahiers de Topologie et Géométrie Différentielle Catégoriques 42.4 (2001): 285-316. <http://eudml.org/doc/91650>.

@article{Sioen2001,
author = {Sioen, M.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {topological constructs; pre-topological spaces; topological numerified superconstructs; pre-approach spaces},
language = {eng},
number = {4},
pages = {285-316},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Symmetric monoidal closed structures in $\mathit \{PRAP\}$},
url = {http://eudml.org/doc/91650},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Sioen, M.
TI - Symmetric monoidal closed structures in $\mathit {PRAP}$
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2001
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 42
IS - 4
SP - 285
EP - 316
LA - eng
KW - topological constructs; pre-topological spaces; topological numerified superconstructs; pre-approach spaces
UR - http://eudml.org/doc/91650
ER -

References

top
  1. [1] Adámek, J. Herrlich, H. and Strecker, G.Abstract and Concrete Categories, John Wiley, New York (1990) Zbl0695.18001MR1051419
  2. [2] Banaschewski, B. and Nelson, E.Tensorproducts and Bimorphisms, Canad. Math. Bull., 19(4) (1976), pp. 385-402 Zbl0392.18003MR442059
  3. [3] Borceux, F.Handbook of Categorical Algebra I, II, III, Encyclopedia of Mathematics Vol. 50, 51, 52, Cambridge University Press (1994) Zbl0911.18001
  4. [4] Brock, P. and Kent, D. C. Approach Spaces, Limit Tower Spaces and Probabilistic Metric Spaces, Appl. Categ. Struct., 5 (1997), pp. 99-110 Zbl0885.54008MR1456517
  5. [5] Činčura, J.On a Tensorproduct in Initially Structured Categories, Math. Slovaca, 29(3) (1979), pp. 245-255 Zbl0419.18001MR561624
  6. [6] Eilenberg, S. and Kelley, G.M.Closed Categories, Proc. Conf. on Categorical Algebra, La Jolla1965, Springer Verlag, New-York (1966), pp. 421-562 Zbl0192.10604MR225841
  7. [7] Herrlich, H. and Lowen, R.On Simultaneously Reflective and Coreflective Sub-constructs, to appear in G.C.L. Brümmer Festschrift Zbl0986.18005
  8. [8] Kannan, V.Reflexive cum Coreflexive Subcategories in Topology, Math. Ann., 195 (1972), pp. 168-174 Zbl0215.09701MR291048
  9. [9] Logar, A. and Rossi, F.Monoidal Closed Structures on Categories with Constant Maps, J. Australian Math. Soc. (Ser. A), 38 (1985), pp. 175-185 Zbl0584.18004MR770124
  10. [10] Lowen, E. and Lowen, R.Characterization of Convergence in Fuzzy Topological Spaces, Internat. J. Math. Math. Sci., 8(3) (1985), pp. 497-511 Zbl0593.54005MR809071
  11. [11] Lowen, E. and Lowen, R.A Quasi-topos Containing CONV and MET as Full Subcategories, Int. J. Math. Math. Sci., 11 (1988), pp. 417-438 Zbl0672.54003MR947271
  12. [12] Lowen, E. and Lowen, R.Topological Quasitopos Hulls of Categories Containing Topological and Metric Objects, Cah. Top. Géom. Diff. Catég., 30 (1989), pp. 213-238 Zbl0706.18002MR1029625
  13. [13] Lowen, E., Lowen, R. and Verbeeck, C.Exponential Objects in the Construct PRAP, Cah. Top. Géom. Diff. Catég., XXXVIII(4) (1997), pp. 259-276 Zbl0888.54015MR1487961
  14. [14] Lowen-Colebunders, E. and Sonck, G.Exponential Objects and Cartesian Closedness in the Construct PRTOP, Appl. Categ. Struct., 1 (1993), pp. 345-360 Zbl0796.54019MR1268508
  15. [15] Lowen, R.Convergence in fuzzy topological spaces, Gen. Top. Appl., 10 (1979), pp. 147-166. Zbl0409.54008MR527841
  16. [16] Lowen, R.Approach Spaces: a Common Supercategory of TOP and MET, Math. Nachr.141 (1989), pp. 183-226 Zbl0676.54012MR1014427
  17. [17] Lowen, R.Approach Spaces: the Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press (1997) Zbl0891.54001MR1472024
  18. [18] Lowen, R., Vaughan, D. and Verbeeck, C.Convergence Using Generalizations of Filters, to appear 
  19. [19] MacLane, S.Natural Associativity and Commutativity, Rice Univ. Studies, 49 (1963), pp. 28-46 Zbl0244.18008MR170925
  20. [20] MacLane, S.Categories for the Working Mathematician, Graduate Texts in Mathematics, Springer Verlag, New-York (1971) Zbl0705.18001MR354798
  21. [21] Nel, L.D.Initially Structured Categories and Cartesian Closedness, Canad. J. Math., 27 (1975), 1361-1377 Zbl0294.18002MR393183
  22. [22] Pumplün, D. DasTensorprodukt als Universelles Problem, Math. Ann., 171 (1967), pp. 247-262 Zbl0189.01706MR212067
  23. [23] Wischnewsky, M.B.Aspects of Categorical Algebra in Initialstructure Categories, Cah. Top. Géom. Diff., XV (1974), pp. 419-444 Zbl0324.18002MR382389

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.