About the naturality of Beattie's decomposition theorem with respect to a change of Hopf algebras

J. N. Alonso Alvarez; J. M. Fernández Vilaboa; R. González Rodríguez; E. Villanueva Novoa

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2002)

  • Volume: 43, Issue: 1, page 2-18
  • ISSN: 1245-530X

How to cite

top

Alvarez, J. N. Alonso, et al. "About the naturality of Beattie's decomposition theorem with respect to a change of Hopf algebras." Cahiers de Topologie et Géométrie Différentielle Catégoriques 43.1 (2002): 2-18. <http://eudml.org/doc/91652>.

@article{Alvarez2002,
author = {Alvarez, J. N. Alonso, Vilaboa, J. M. Fernández, Rodríguez, R. González, Novoa, E. Villanueva},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {1},
pages = {2-18},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {About the naturality of Beattie's decomposition theorem with respect to a change of Hopf algebras},
url = {http://eudml.org/doc/91652},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Alvarez, J. N. Alonso
AU - Vilaboa, J. M. Fernández
AU - Rodríguez, R. González
AU - Novoa, E. Villanueva
TI - About the naturality of Beattie's decomposition theorem with respect to a change of Hopf algebras
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2002
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 43
IS - 1
SP - 2
EP - 18
LA - eng
UR - http://eudml.org/doc/91652
ER -

References

top
  1. [1] Alonso Alvarez, J.N. & Fernández Vilaboa, J.M., Inner actions and Galois H-objects in a closed symmetric category, Cahiers de Topologie et Geometrie Differentielle categoriques, XXXV-1 (1994), 271-284. Zbl0805.18008
  2. [2] Bass, M., Algebraic K-Theory, Benjamin, New York (1968). Zbl0174.30302MR249491
  3. [3] Beattie, M., A direct sum decomposition for the Brauer group of H-module algebras, J. Algebra, 43 (1976), 686-693. Zbl0342.16010MR441942
  4. [4] Caenepeel, S., Brauer groups, Hopf algebras and Galois theory, Kluwer Academic Publishers (1998) Zbl0898.16001MR1610222
  5. [5] Chase, S.U. & Sweedler, M.E., Hopf algebras and Galois theory, Lect. Notes in Math., 97 (1969). Zbl0197.01403MR260724
  6. [6] Eilenberg, S. & Kelly, G.M., Closed Categories, Proceedings in a Conference on Categorical Algebra, La Jolla1966, Springer Verlag, Berlin (1966), 421-562. Zbl0192.10604MR225841
  7. [7] Fernández Vilaboa, J.M., Grupos de Brauer y de Galois de un Algebra de Hopf en una categoría cerrada, Alxebra42, Santiago de Compostela (1985). Zbl0579.16004MR797753
  8. [8] Fernández Vilaboa, J.M., González Rodríguez, R. & Villa-Nueva Novoa, E., Exact sequences for the Galois group, Comm. in Algebra24(11) (1996), 3413-3435. Zbl0884.18010MR1405262
  9. [9] López López, M.P., Objetos de Galois sobre un algebra de Hopf finita, Alxebra25, Santiago de Compostela (1980). Zbl0427.18010MR573270
  10. [10] Pareigis B., Non Additive Ring and Module Theory IV: The Brauer Group of a Symmetric Monoidal Category, Lecture Notes in Math.549, Springer Verlag, New York (1976), 112-133. Zbl0362.18011MR498794
  11. [11] Wenninger, C.H., Corestriction of Galois algebras, J. Algebra144 (1991), 359-370. Zbl0737.16010MR1140609

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.