A classification of degree n functors, I

B. Johnson; R. McCarthy

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2003)

  • Volume: 44, Issue: 1, page 2-38
  • ISSN: 1245-530X

How to cite

top

Johnson, B., and McCarthy, R.. "A classification of degree $n$ functors, I." Cahiers de Topologie et Géométrie Différentielle Catégoriques 44.1 (2003): 2-38. <http://eudml.org/doc/91664>.

@article{Johnson2003,
author = {Johnson, B., McCarthy, R.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {abelian category; chain complex; cotriple; (homogeneous) degree functor; Kan extension; Taylor tower},
language = {eng},
number = {1},
pages = {2-38},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A classification of degree $n$ functors, I},
url = {http://eudml.org/doc/91664},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Johnson, B.
AU - McCarthy, R.
TI - A classification of degree $n$ functors, I
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2003
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 44
IS - 1
SP - 2
EP - 38
LA - eng
KW - abelian category; chain complex; cotriple; (homogeneous) degree functor; Kan extension; Taylor tower
UR - http://eudml.org/doc/91664
ER -

References

top
  1. [E] S. Eilenberg, Abstract description of some basic functors, J. Indian Math. Soc.24 (1960), 231-234. Zbl0100.26103MR125148
  2. [E-M1] S. Eilenberg and S. Mac Lane, Homology theories for multiplicative systems, Trans. Amer. Math. Soc.71 (1951), 294-330. Zbl0043.25403MR43774
  3. [E-M2] S. Eilenberg and S. Mac Lane, On the groups H(π, n), II, Ann. of Math.60 (1954), 49-139. Zbl0055.41704
  4. [G1] T.G. Goodwillie, Calculus I.: The first derivative of pseudoisotopy theory, K-Theory4 (1990), 1-27. Zbl0741.57021MR1076523
  5. [G2] T.G. Goodwillie, Calculus Ii: Analytic functors, K-Theory5 (1992), 295-332. Zbl0776.55008MR1162445
  6. [G3] T.G. Goodwillie, Calculus III: The Taylor series of a homotopy functor, in preparation. 
  7. [J-M1] B. Johnson and R. McCarthy, Linearization, Dold-Puppe stabilization, and Mac Lane's Q-construction, Trans. Amer. Math. Soc.350 (1998), 1555-1593. Zbl0897.18005MR1451606
  8. [J-M2] B. Johnson and R. McCarthy, Taylor towers for functors of additive categories, J. Pure Appl. Algebra137 (1999), 253-284. Zbl0929.18007MR1685140
  9. [J-M3] B. Johnson and R. McCarthy, Deriving calculus with cotriples, preprint. Zbl1028.18004MR2022719
  10. [J-M4] B. Johnson and R. McCarthy, A classification of degree n functors, II, to appear in Cahiers Topologie Géom. Différentielle Catég. Zbl1050.18012MR2003579
  11. [M] S. Mac Lane, Homology, Springer-Verlag, Berlin, 1975. Zbl0818.18001MR1344215
  12. [P] T. Pirashvili, Polynomial approximation of Ext and Tor groups in functor categories, Comm. in Algebra21 (1993), 1705-1719. Zbl0793.18009MR1213983
  13. [W] C.E. Watts, Intrinsic characterizations of some additive functors, Proc. Amer. Math. Soc.11 (1960), 5-8. Zbl0093.04101MR118757
  14. [We] C. Weibel, An introduction to homological algebra, Cambridge University Press, Cambridge, 1994. Zbl0797.18001MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.