A note on the holonomy of connections in twisted bundles

Marco Mackaay

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2003)

  • Volume: 44, Issue: 1, page 39-62
  • ISSN: 1245-530X

How to cite

top

Mackaay, Marco. "A note on the holonomy of connections in twisted bundles." Cahiers de Topologie et Géométrie Différentielle Catégoriques 44.1 (2003): 39-62. <http://eudml.org/doc/91665>.

@article{Mackaay2003,
author = {Mackaay, Marco},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {1},
pages = {39-62},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A note on the holonomy of connections in twisted bundles},
url = {http://eudml.org/doc/91665},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Mackaay, Marco
TI - A note on the holonomy of connections in twisted bundles
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2003
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 44
IS - 1
SP - 39
EP - 62
LA - eng
UR - http://eudml.org/doc/91665
ER -

References

top
  1. [1] J.W. Barrett.Holonomy and path structures in general relativity and Yang-Mills theory. Int. J. Theor. Phys., 30 (9):1171-1215, 1991. Zbl0728.53055MR1122025
  2. [2] P. Bouwknegt and V. Mathai.D-branes, B-fields and twisted K-theory. J. High Energy Phys., 3, Paper 7, 2000. Zbl0959.81037MR1756434
  3. [3] R. Brown and C.B. SpencerG-groupoids, crossed modules and the fundamental groupoid of a topological group. Nederl. Akad. Wetensch. Proc. Ser. A79, 38(4):296-302, 1976. Zbl0333.55011MR419643
  4. [4] J-W. Brylinski.Loop spaces, characteristic classes and geometric quantization, volume 107 of Progress in Mathematics. Birkhauser, 1993. Zbl0823.55002MR1197353
  5. [5] A. Caetano and R.F. Picken.An axiomatic definition of holonomy. Int. J. Math., 5(6):835-848, 1994. Zbl0816.53016MR1298997
  6. [6] A. Caetano and R.F. Picken.On a family of topological invariants similar to homotopy groups. Rend. Ist. Mat. Univ. Trieste, 30(1-2):81-90, 1998. Zbl0935.55006MR1704827
  7. [7] D.S. Chatterjee.On gerbs. PhD thesis, University of Cambridge, 1998. 
  8. [8] A. Kapustin.D-branes in a topologically nontrivial B-field. Adv. Theor. Math. Phys., 4(1):127-154, 2000. Zbl0992.81059MR1807598
  9. [9] M.A. Mackaay and R.F. Picken.Holonomy and parallel transport for Abelian gerbes. To appear in Adv. Math. Preprint available as math.DG/0007053. Zbl1034.53051MR1932333
  10. [10] K. Mackenzie.Lie groupoids and Lie algebroids in differential geometry. London Mathematical Society Lecture Note Series, 124. Cambridge University Press, Cambridge, 1987. Zbl0683.53029MR896907

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.