A note on the holonomy of connections in twisted bundles
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2003)
- Volume: 44, Issue: 1, page 39-62
- ISSN: 1245-530X
Access Full Article
topHow to cite
topMackaay, Marco. "A note on the holonomy of connections in twisted bundles." Cahiers de Topologie et Géométrie Différentielle Catégoriques 44.1 (2003): 39-62. <http://eudml.org/doc/91665>.
@article{Mackaay2003,
author = {Mackaay, Marco},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {1},
pages = {39-62},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A note on the holonomy of connections in twisted bundles},
url = {http://eudml.org/doc/91665},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Mackaay, Marco
TI - A note on the holonomy of connections in twisted bundles
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2003
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 44
IS - 1
SP - 39
EP - 62
LA - eng
UR - http://eudml.org/doc/91665
ER -
References
top- [1] J.W. Barrett.Holonomy and path structures in general relativity and Yang-Mills theory. Int. J. Theor. Phys., 30 (9):1171-1215, 1991. Zbl0728.53055MR1122025
- [2] P. Bouwknegt and V. Mathai.D-branes, B-fields and twisted K-theory. J. High Energy Phys., 3, Paper 7, 2000. Zbl0959.81037MR1756434
- [3] R. Brown and C.B. SpencerG-groupoids, crossed modules and the fundamental groupoid of a topological group. Nederl. Akad. Wetensch. Proc. Ser. A79, 38(4):296-302, 1976. Zbl0333.55011MR419643
- [4] J-W. Brylinski.Loop spaces, characteristic classes and geometric quantization, volume 107 of Progress in Mathematics. Birkhauser, 1993. Zbl0823.55002MR1197353
- [5] A. Caetano and R.F. Picken.An axiomatic definition of holonomy. Int. J. Math., 5(6):835-848, 1994. Zbl0816.53016MR1298997
- [6] A. Caetano and R.F. Picken.On a family of topological invariants similar to homotopy groups. Rend. Ist. Mat. Univ. Trieste, 30(1-2):81-90, 1998. Zbl0935.55006MR1704827
- [7] D.S. Chatterjee.On gerbs. PhD thesis, University of Cambridge, 1998.
- [8] A. Kapustin.D-branes in a topologically nontrivial B-field. Adv. Theor. Math. Phys., 4(1):127-154, 2000. Zbl0992.81059MR1807598
- [9] M.A. Mackaay and R.F. Picken.Holonomy and parallel transport for Abelian gerbes. To appear in Adv. Math. Preprint available as math.DG/0007053. Zbl1034.53051MR1932333
- [10] K. Mackenzie.Lie groupoids and Lie algebroids in differential geometry. London Mathematical Society Lecture Note Series, 124. Cambridge University Press, Cambridge, 1987. Zbl0683.53029MR896907
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.