Simplicial n -fold monoidal categories model all loop spaces

Fiedorowicz; Vogt

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2003)

  • Volume: 44, Issue: 2, page 105-148
  • ISSN: 1245-530X

How to cite

top

Fiedorowicz, and Vogt. "Simplicial $n$-fold monoidal categories model all loop spaces." Cahiers de Topologie et Géométrie Différentielle Catégoriques 44.2 (2003): 105-148. <http://eudml.org/doc/91667>.

@article{Fiedorowicz2003,
author = {Fiedorowicz, Vogt},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {n-fold monoidal category; n-fold loop space; classifying space},
language = {eng},
number = {2},
pages = {105-148},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Simplicial $n$-fold monoidal categories model all loop spaces},
url = {http://eudml.org/doc/91667},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Fiedorowicz
AU - Vogt
TI - Simplicial $n$-fold monoidal categories model all loop spaces
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2003
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 44
IS - 2
SP - 105
EP - 148
LA - eng
KW - n-fold monoidal category; n-fold loop space; classifying space
UR - http://eudml.org/doc/91667
ER -

References

top
  1. [1] J.M. Boardman, R.M. Vogt, Homotopy-everything H-spaces, Bull. Amer. Math. Soc.74 (1968), 1117-1122. Zbl0165.26204MR236922
  2. [2] C. Balteanu, Z. Fiedorowicz, R. Schw" anzl, R.M. Vogt, Iterated monoidal categories, to appear. Zbl1030.18006MR1982884
  3. [3] J.-M. Cordier, Sur la notion de diagramme homotopiquement coherent, Cah. Topologie Geom. Differ.23 (1982), 93-112. Zbl0493.55009MR648798
  4. [4] J.-M. Cordier and T. Porter, Homotopy coherent category theory, Trans. Am. Math. Soc.349 (1997), 1-54. Zbl0865.18006MR1376543
  5. [5] M. Artin, A. Grothendieck, J.L. Verdier, Théorie des topos et cohomologie étale des schémas, Springer Lecture Notes in Mathematics 269 (1972). Zbl0234.00007MR354653
  6. [6] R. Godement, Topologie algébrique et théorie des faisceaux, Paris: Hermann, 1973. Zbl0275.55010MR345092
  7. [7] A. Joyal and R. Street, Braided tensor categories, Advances in Math.102(1993), 20-78. Zbl0817.18007MR1250465
  8. [8] C. Kassel, Quantum Groups, Springer-Verlag, 1994. Zbl0808.17003MR1321145
  9. [9] D.M. Latch, The uniqueness of homology for the category of small categories, J. Pure and Appl. Algebra9 (1977), 221-237. Zbl0363.18008MR460421
  10. [10] S. MacLane, Categories for the working mathematician, Springer-Verlag, 1971. Zbl0705.18001MR354798
  11. [11] J.P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271, Springer, 1972. Zbl0244.55009MR420610
  12. [12] D.G. Quillen, Higher algebraic K-theory I, Springer Lecture Notes in Math. 341 (1973), 85-147. Zbl0292.18004MR338129
  13. [13] R. Street, Two constructions on lax functors, Cahiers Topologie Geometrie Differentielle13(1972), 217-264. Zbl0252.18008MR347936
  14. [14] R.W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Phil. Soc.85(1979), 91-109. Zbl0392.18001MR510404
  15. [15] R.W. Thomason, Symmetric monoidal categories model all connective spectra, Theory and Appl. of Categories1 (1995), 78-118. Zbl0876.55009MR1337494
  16. [16] R.M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math.22 (1971), 545-555. Zbl0237.54001MR300277
  17. [17] R.M. Vogt, Homotopy limits and colimits, Math. Z.134 (1973), 11-52. Zbl0276.55006MR331376

NotesEmbed ?

top

You must be logged in to post comments.