Simplicial n -fold monoidal categories model all loop spaces

Fiedorowicz; Vogt

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2003)

  • Volume: 44, Issue: 2, page 105-148
  • ISSN: 1245-530X

How to cite

top

Fiedorowicz, and Vogt. "Simplicial $n$-fold monoidal categories model all loop spaces." Cahiers de Topologie et Géométrie Différentielle Catégoriques 44.2 (2003): 105-148. <http://eudml.org/doc/91667>.

@article{Fiedorowicz2003,
author = {Fiedorowicz, Vogt},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {n-fold monoidal category; n-fold loop space; classifying space},
language = {eng},
number = {2},
pages = {105-148},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Simplicial $n$-fold monoidal categories model all loop spaces},
url = {http://eudml.org/doc/91667},
volume = {44},
year = {2003},
}

TY - JOUR
AU - Fiedorowicz
AU - Vogt
TI - Simplicial $n$-fold monoidal categories model all loop spaces
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2003
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 44
IS - 2
SP - 105
EP - 148
LA - eng
KW - n-fold monoidal category; n-fold loop space; classifying space
UR - http://eudml.org/doc/91667
ER -

References

top
  1. [1] J.M. Boardman, R.M. Vogt, Homotopy-everything H-spaces, Bull. Amer. Math. Soc.74 (1968), 1117-1122. Zbl0165.26204MR236922
  2. [2] C. Balteanu, Z. Fiedorowicz, R. Schw" anzl, R.M. Vogt, Iterated monoidal categories, to appear. Zbl1030.18006MR1982884
  3. [3] J.-M. Cordier, Sur la notion de diagramme homotopiquement coherent, Cah. Topologie Geom. Differ.23 (1982), 93-112. Zbl0493.55009MR648798
  4. [4] J.-M. Cordier and T. Porter, Homotopy coherent category theory, Trans. Am. Math. Soc.349 (1997), 1-54. Zbl0865.18006MR1376543
  5. [5] M. Artin, A. Grothendieck, J.L. Verdier, Théorie des topos et cohomologie étale des schémas, Springer Lecture Notes in Mathematics 269 (1972). Zbl0234.00007MR354653
  6. [6] R. Godement, Topologie algébrique et théorie des faisceaux, Paris: Hermann, 1973. Zbl0275.55010MR345092
  7. [7] A. Joyal and R. Street, Braided tensor categories, Advances in Math.102(1993), 20-78. Zbl0817.18007MR1250465
  8. [8] C. Kassel, Quantum Groups, Springer-Verlag, 1994. Zbl0808.17003MR1321145
  9. [9] D.M. Latch, The uniqueness of homology for the category of small categories, J. Pure and Appl. Algebra9 (1977), 221-237. Zbl0363.18008MR460421
  10. [10] S. MacLane, Categories for the working mathematician, Springer-Verlag, 1971. Zbl0705.18001MR354798
  11. [11] J.P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271, Springer, 1972. Zbl0244.55009MR420610
  12. [12] D.G. Quillen, Higher algebraic K-theory I, Springer Lecture Notes in Math. 341 (1973), 85-147. Zbl0292.18004MR338129
  13. [13] R. Street, Two constructions on lax functors, Cahiers Topologie Geometrie Differentielle13(1972), 217-264. Zbl0252.18008MR347936
  14. [14] R.W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Phil. Soc.85(1979), 91-109. Zbl0392.18001MR510404
  15. [15] R.W. Thomason, Symmetric monoidal categories model all connective spectra, Theory and Appl. of Categories1 (1995), 78-118. Zbl0876.55009MR1337494
  16. [16] R.M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math.22 (1971), 545-555. Zbl0237.54001MR300277
  17. [17] R.M. Vogt, Homotopy limits and colimits, Math. Z.134 (1973), 11-52. Zbl0276.55006MR331376

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.