Metrizability of σ -frames

M. Mehdi Ebrahimi; M. Vojdani Tabatabaee; M. Mahmoudi

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2004)

  • Volume: 45, Issue: 2, page 147-156
  • ISSN: 1245-530X

How to cite

top

Ebrahimi, M. Mehdi, Tabatabaee, M. Vojdani, and Mahmoudi, M.. "Metrizability of $\sigma $-frames." Cahiers de Topologie et Géométrie Différentielle Catégoriques 45.2 (2004): 147-156. <http://eudml.org/doc/91680>.

@article{Ebrahimi2004,
author = {Ebrahimi, M. Mehdi, Tabatabaee, M. Vojdani, Mahmoudi, M.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {metrizability; -frames},
language = {eng},
number = {2},
pages = {147-156},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Metrizability of $\sigma $-frames},
url = {http://eudml.org/doc/91680},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Ebrahimi, M. Mehdi
AU - Tabatabaee, M. Vojdani
AU - Mahmoudi, M.
TI - Metrizability of $\sigma $-frames
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2004
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 45
IS - 2
SP - 147
EP - 156
LA - eng
KW - metrizability; -frames
UR - http://eudml.org/doc/91680
ER -

References

top
  1. 1 B. Banaschewski and A. Pultr, A new look at pointfree metrization theorems, Comment. Math. Univ. Carolinae39, 1 (1998) 167-175. Zbl0937.54019MR1623010
  2. 2 B. Banaschewski and C. Gilmour, Stone-Cech compactification and dimension theory for regular σ-frames, J. London Math. Soc.2, 39 (1989) 1-8. Zbl0675.06005
  3. 3 M. Mehdi Ebrahimi and M. Vojdani Tabatabaee, Gomplete metric σ-frames, Preprint. Zbl1031.06006
  4. 4 M. Mehdi Ebrahimi and M. Mahmoudi, "Frame", Tech. Rep., Shahid Beheshti Univ., 1995. 
  5. 5 R. Engelking, "General Topology" Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin1989. Zbl0684.54001MR1039321
  6. 6 P.T. Johnstone, "Stone Spaces", Cambridge Univrersity Press, Cambridge, 1982. Zbl0499.54001MR698074
  7. 7 J.R. Isbell, Atomless parts of spaces, Math. Scand.31 (1972), 5-32. Zbl0246.54028MR358725
  8. 8 J.R. Isbell, Graduation and dimension in locales, in: Aspects of Topology, London M5 Lecture Notes, 93 (1985), 195-210. Zbl0555.54020MR787829
  9. 9 A. Pultr, Remarks on metrizable locales, Suppl. Rend. Circ. Mat. Palermo, 6 (1984). Zbl0565.54001MR782722
  10. 10 A. Pultr, Categories of diametric frames, Math. Proc. Camb. Phil. Soc. (1989), 105,285. Zbl0683.54008MR974984
  11. 11 A. Pultr, Pointless uniformities II (Dia)metrization, Comment. Math. Univ. Carolinae, 25 (1984), 105-120. Zbl0543.54023MR749119
  12. 12 S. Vickers, "Topology Via Logic", Cambridge Tracts in Theor. Comp. Sci., Number 5, Cambridge University press, Cambridge, 1985. Zbl0668.54001MR1002193
  13. 13 M. Vojdani Tabatabaee and M. Mahmoudi, Metric σ-Frames versus Metric Lindelöf Spaces, Preprint. Zbl1034.54009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.