Sheaves for an involutive quantaloid
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2005)
- Volume: 46, Issue: 4, page 243-274
- ISSN: 1245-530X
Access Full Article
topHow to cite
topGarraway, W. Dale. "Sheaves for an involutive quantaloid." Cahiers de Topologie et Géométrie Différentielle Catégoriques 46.4 (2005): 243-274. <http://eudml.org/doc/91697>.
@article{Garraway2005,
author = {Garraway, W. Dale},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {category; semicategory; quantaloid; sheave},
language = {eng},
number = {4},
pages = {243-274},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Sheaves for an involutive quantaloid},
url = {http://eudml.org/doc/91697},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Garraway, W. Dale
TI - Sheaves for an involutive quantaloid
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2005
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 46
IS - 4
SP - 243
EP - 274
LA - eng
KW - category; semicategory; quantaloid; sheave
UR - http://eudml.org/doc/91697
ER -
References
top- [1] F. Borceux and R. CrucianiSheaves on a Quantale, Cahiers. Top. Cat, 34-3, 1993. 209-228 Zbl0793.06009MR1239469
- [2] U. Berni-Canani, F. Borceux and R. Succi-CrucianiA Theory of Quantale Sets, J. Pure and Applied Algebra62, 1989. 123-136 Zbl0685.18006MR1027752
- [3] R. Betti, A. Carboni, R. Street and R. WaltersVariation Through Enrichment, J. Pure and Applied Algebra. 29, 1983. 109 - 127 Zbl0571.18004MR707614
- [4] A. Carboni and R.F.C. WaltersCartesian Bicategories I, J. Pure and Applied Algebra, 49, 1987. 11-32 Zbl0637.18003MR920513
- [5] W. Dale GarrawayGeneralized Supremum Enriched Categories and Their Sheaves, PhD. Thesis, Dalhousie University2002
- [6] P. FreydCategories Allegories, North Holland Pub. Co.1990 Zbl0698.18002MR1071176
- [7] R.P. GylysSheaves on Quantaloids, Lithuanian Math. J., 40-2, 2000. 133-171 Zbl0970.18010MR1806339
- [8] R.P. GylysSheaves on Involutive Quantaloids, Lithuanian Math J.41-1, 2001. 44 - 69 Zbl1014.18003MR1849807
- [9] D. HiggsInjectivity in the Topos of Complete Heyting Algebra Valued Sets, Can. J. Math,36-3, 1984. 550-568 Zbl0541.18003MR752984
- [10] S. MerovitzH-valued Sets and the Associated Sheaf Functor, Masters Thesis, Dalhousie University, 1996
- [11] C.J. Mulvey &, Rend. Circ. Mat. Palermo Suppl. No. 21986. 99 - 104 Zbl0633.46065MR853151
- [12] C.J. Mulvey and M. Nawaz Quantales: Quantal Sets. Non-classical logics and their applications to fuzzy subsets, Theory Decis. Lib. Ser. B Math. Statist. Methods, 32, Kluwer Acad. Publ., Dordrecht, 1995. 159-217 Zbl0838.06014MR1345644
- [13] C.J. Mulvey and J.W. Pelletiera quantisation of the calculus of relations, Category Theory 1991. Montreal PQ, 1991345-360, CMS conf. proc. 13, Amer. Math. Soc., Providence RI, 1992. Zbl0793.06008MR1192157
- [14] M. Nawaz Quantales: Quantale Sets, PhD Thesis, University of Sussex, 1985
- [15] A.M. PittsApplications of Sup-Lattice Enriched Category Theory to Sheaf Theory, Proc. London Math. Soc. (3) 57, 1988. 433-480 Zbl0619.18005MR960096
- [16] K. RosenthalThe Theory of Quantaloids, Pitman Research Notes in Math No. 348, 1996 Zbl0845.18003MR1427263
- [17] G. Van den BosscheQuantaloids and Non-Commutative Ring Representations, Applied Categorical Structures, 3, 1995. 305-320 Zbl0847.18005MR1364011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.