Sheaves for an involutive quantaloid

W. Dale Garraway

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2005)

  • Volume: 46, Issue: 4, page 243-274
  • ISSN: 1245-530X

How to cite

top

Garraway, W. Dale. "Sheaves for an involutive quantaloid." Cahiers de Topologie et Géométrie Différentielle Catégoriques 46.4 (2005): 243-274. <http://eudml.org/doc/91697>.

@article{Garraway2005,
author = {Garraway, W. Dale},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {category; semicategory; quantaloid; sheave},
language = {eng},
number = {4},
pages = {243-274},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Sheaves for an involutive quantaloid},
url = {http://eudml.org/doc/91697},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Garraway, W. Dale
TI - Sheaves for an involutive quantaloid
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2005
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 46
IS - 4
SP - 243
EP - 274
LA - eng
KW - category; semicategory; quantaloid; sheave
UR - http://eudml.org/doc/91697
ER -

References

top
  1. [1] F. Borceux and R. CrucianiSheaves on a Quantale, Cahiers. Top. Cat, 34-3, 1993. 209-228 Zbl0793.06009MR1239469
  2. [2] U. Berni-Canani, F. Borceux and R. Succi-CrucianiA Theory of Quantale Sets, J. Pure and Applied Algebra62, 1989. 123-136 Zbl0685.18006MR1027752
  3. [3] R. Betti, A. Carboni, R. Street and R. WaltersVariation Through Enrichment, J. Pure and Applied Algebra. 29, 1983. 109 - 127 Zbl0571.18004MR707614
  4. [4] A. Carboni and R.F.C. WaltersCartesian Bicategories I, J. Pure and Applied Algebra, 49, 1987. 11-32 Zbl0637.18003MR920513
  5. [5] W. Dale GarrawayGeneralized Supremum Enriched Categories and Their Sheaves, PhD. Thesis, Dalhousie University2002 
  6. [6] P. FreydCategories Allegories, North Holland Pub. Co.1990 Zbl0698.18002MR1071176
  7. [7] R.P. GylysSheaves on Quantaloids, Lithuanian Math. J., 40-2, 2000. 133-171 Zbl0970.18010MR1806339
  8. [8] R.P. GylysSheaves on Involutive Quantaloids, Lithuanian Math J.41-1, 2001. 44 - 69 Zbl1014.18003MR1849807
  9. [9] D. HiggsInjectivity in the Topos of Complete Heyting Algebra Valued Sets, Can. J. Math,36-3, 1984. 550-568 Zbl0541.18003MR752984
  10. [10] S. MerovitzH-valued Sets and the Associated Sheaf Functor, Masters Thesis, Dalhousie University, 1996 
  11. [11] C.J. Mulvey &, Rend. Circ. Mat. Palermo Suppl. No. 21986. 99 - 104 Zbl0633.46065MR853151
  12. [12] C.J. Mulvey and M. Nawaz Quantales: Quantal Sets. Non-classical logics and their applications to fuzzy subsets, Theory Decis. Lib. Ser. B Math. Statist. Methods, 32, Kluwer Acad. Publ., Dordrecht, 1995. 159-217 Zbl0838.06014MR1345644
  13. [13] C.J. Mulvey and J.W. Pelletiera quantisation of the calculus of relations, Category Theory 1991. Montreal PQ, 1991345-360, CMS conf. proc. 13, Amer. Math. Soc., Providence RI, 1992. Zbl0793.06008MR1192157
  14. [14] M. Nawaz Quantales: Quantale Sets, PhD Thesis, University of Sussex, 1985 
  15. [15] A.M. PittsApplications of Sup-Lattice Enriched Category Theory to Sheaf Theory, Proc. London Math. Soc. (3) 57, 1988. 433-480 Zbl0619.18005MR960096
  16. [16] K. RosenthalThe Theory of Quantaloids, Pitman Research Notes in Math No. 348, 1996 Zbl0845.18003MR1427263
  17. [17] G. Van den BosscheQuantaloids and Non-Commutative Ring Representations, Applied Categorical Structures, 3, 1995. 305-320 Zbl0847.18005MR1364011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.