Projective frames : a general view

B. Banaschewski

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2005)

  • Volume: 46, Issue: 4, page 301-312
  • ISSN: 1245-530X

How to cite

top

Banaschewski, B.. "Projective frames : a general view." Cahiers de Topologie et Géométrie Différentielle Catégoriques 46.4 (2005): 301-312. <http://eudml.org/doc/91699>.

@article{Banaschewski2005,
author = {Banaschewski, B.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {category of frames; projectivity},
language = {eng},
number = {4},
pages = {301-312},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Projective frames : a general view},
url = {http://eudml.org/doc/91699},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Banaschewski, B.
TI - Projective frames : a general view
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2005
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 46
IS - 4
SP - 301
EP - 312
LA - eng
KW - category of frames; projectivity
UR - http://eudml.org/doc/91699
ER -

References

top
  1. [1] B. Banaschewski, On the topologies of injective spaces, in: Continuous Lattices and their Applications. Lecture Notes in Pure & Appl. Math.101, Marcel Dekker, New York, 1985, pp. 1-8. Zbl0614.54033MR825992
  2. [2], Another look at the localic Tychonoff theorem. Comment. Math. Univ. Carolinae29 (1988), 647-656. Zbl0667.54009MR982782
  3. [3] B. Banaschewski and S.B. Niefield, Projective and supercohereent frames. J. Pure Appl. Algebra70 (1991), 45-51. Zbl0744.06006MR1100504
  4. [4] A. Day, Filter monads, continuous lattices, and closure systems. Canadian J. Math.27 (1975), 50-59. Zbl0436.18003MR367013
  5. [5] M. Escardó, Injective locales over perfect embeddings and algebras of the upper powerlocale monoad. Appl. Gen. Topology4 (2003), 193-200. Zbl1061.06025MR2021762
  6. [6] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, A Compendium of Continuous Lattices. Springer-VerlagBerlinHeidelbergNew York1980. Zbl0452.06001MR614752
  7. [7] P.T. Johnstone, The Gleason cover of a topos II. J. Pure Appl.22 (1981), 229-247. Zbl0445.18005MR629332
  8. [8], Stone spaces, Cambridge University Press, Cambridge1982. Zbl0499.54001MR698074
  9. [9] S. Mac Lane, Categories for the Working Mathematician. Graduate Texts in Mathematics5, Springer-Verlag, BerlinHeidelbergNew York1971. Zbl0232.18001MR354798
  10. [10] J. Paseka, Covers in generalized frames. In Proceedings of the Summer School on General Algebra and Ordered Sets 1994Olomouc. Palacky UniversityOlomouc1994, pp. 84-102. Zbl0873.06004
  11. [11] G.N. Raney, A subdirect union representation of completely distributive complete lattices. Proc. Amer. Math. Soc.4 (1953), 518-522. Zbl0053.35201MR58568
  12. [12] S. Vickers, Topology via Logic. Cambridge University Press, Cambridge1985. Zbl0668.54001MR1002193

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.