Combinatorial stacks and the four-color theorem
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2006)
- Volume: 47, Issue: 1, page 29-49
- ISSN: 1245-530X
Access Full Article
topHow to cite
topReferences
top- [1] K. Appel and W. Haken: Every planar map is four colourable (Illinois J. Math.21 (1977), pp. 429-567). Zbl0387.05009
- [2] R. Attal: Combinatorics of non-Abelian gerbes with connection and curvature (Annales de la Fondation Louis de Broglie, vol. 29 n° 4, pp. 609-634; math-ph/0203056). MR2146290
- [3] J.C. Baez and M. Carrion Àlvarez: Quantum Gravity (http://www.math.ucr.edu/~miguel/QGravity/QGravity.html).
- [4] D. Bar-Natan: Lie Algebras and the Four Color Theorem (Combinatorica17-1 (1997) pp. 43-52; q-alg/9606016). Zbl0880.17005MR1466574
- [5] A. Cayley: On the colouring of maps (Proc. London Math. Soc.9, p. 148, 1878).
- [6] M.M. Kapranov: Analogies between the Langlands Correspondence and Topological Quantum Field Theory (In Functional Analysis on the Eve of the 21 st Century, edited by S. Gindikin et al., Progress in Mathematics131, Birkhaüser, 1995). Zbl0858.11062MR1373001
- [7] L.H. Kauffman and H. Saleur: An Algebraic Approach to the Planar Coloring Problem (Comm. Math. Phys.152 (1993), pp. 565-590). Zbl0769.05039MR1213302
- [8] A.A. Kirillov: Representation Theory and Noncommutative Harmonic Analysis I (Encyclopaedia of Mathematical Sciences, Volume 22; Springer-Verlag, 1994). Zbl0805.00006MR1311487
- [9] S. Mac Lane: Categories for the Working Mathematician (Springer Verlag, 1997). Zbl0232.18001MR354798
- [10] R. Penrose: Applications of negative dimensional tensors (in Combinatorial Mathematics and its Applications, D. J. A. Welsh, Academic Press, 1971). Zbl0216.43502MR281657
- [11] A.J. Power: A 2-Categorical Pasting Theorem (J. Algebra129 (1990), pp. 439-445). Zbl0698.18005MR1040947
- [12] N. Robertson, D.P. Sanders, P. Seymour, R. Thomas: The four-colour theorem (J. Comb. Theory (Series B), 70 (1997), pp. 2-44). Zbl0883.05056MR1441258
- [13] P.G. Tait: On the colouring of maps (Proc. Roy. Soc. Edinburgh, pp. 501-503, 1879-80). Zbl12.0408.02JFM12.0408.02
- [14] R.A. Wilson: Graphs, colourings and the four-colour theorem (Oxford Science Publications, 2002). Zbl1007.05002MR1888337