Combinatorial stacks and the four-color theorem

Romain Attal

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2006)

  • Volume: 47, Issue: 1, page 29-49
  • ISSN: 1245-530X

How to cite

top

Attal, Romain. "Combinatorial stacks and the four-color theorem." Cahiers de Topologie et Géométrie Différentielle Catégoriques 47.1 (2006): 29-49. <http://eudml.org/doc/91700>.

@article{Attal2006,
author = {Attal, Romain},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {1},
pages = {29-49},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Combinatorial stacks and the four-color theorem},
url = {http://eudml.org/doc/91700},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Attal, Romain
TI - Combinatorial stacks and the four-color theorem
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2006
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 47
IS - 1
SP - 29
EP - 49
LA - eng
UR - http://eudml.org/doc/91700
ER -

References

top
  1. [1] K. Appel and W. Haken: Every planar map is four colourable (Illinois J. Math.21 (1977), pp. 429-567). Zbl0387.05009
  2. [2] R. Attal: Combinatorics of non-Abelian gerbes with connection and curvature (Annales de la Fondation Louis de Broglie, vol. 29 n° 4, pp. 609-634; math-ph/0203056). MR2146290
  3. [3] J.C. Baez and M. Carrion Àlvarez: Quantum Gravity (http://www.math.ucr.edu/~miguel/QGravity/QGravity.html). 
  4. [4] D. Bar-Natan: Lie Algebras and the Four Color Theorem (Combinatorica17-1 (1997) pp. 43-52; q-alg/9606016). Zbl0880.17005MR1466574
  5. [5] A. Cayley: On the colouring of maps (Proc. London Math. Soc.9, p. 148, 1878). 
  6. [6] M.M. Kapranov: Analogies between the Langlands Correspondence and Topological Quantum Field Theory (In Functional Analysis on the Eve of the 21 st Century, edited by S. Gindikin et al., Progress in Mathematics131, Birkhaüser, 1995). Zbl0858.11062MR1373001
  7. [7] L.H. Kauffman and H. Saleur: An Algebraic Approach to the Planar Coloring Problem (Comm. Math. Phys.152 (1993), pp. 565-590). Zbl0769.05039MR1213302
  8. [8] A.A. Kirillov: Representation Theory and Noncommutative Harmonic Analysis I (Encyclopaedia of Mathematical Sciences, Volume 22; Springer-Verlag, 1994). Zbl0805.00006MR1311487
  9. [9] S. Mac Lane: Categories for the Working Mathematician (Springer Verlag, 1997). Zbl0232.18001MR354798
  10. [10] R. Penrose: Applications of negative dimensional tensors (in Combinatorial Mathematics and its Applications, D. J. A. Welsh, Academic Press, 1971). Zbl0216.43502MR281657
  11. [11] A.J. Power: A 2-Categorical Pasting Theorem (J. Algebra129 (1990), pp. 439-445). Zbl0698.18005MR1040947
  12. [12] N. Robertson, D.P. Sanders, P. Seymour, R. Thomas: The four-colour theorem (J. Comb. Theory (Series B), 70 (1997), pp. 2-44). Zbl0883.05056MR1441258
  13. [13] P.G. Tait: On the colouring of maps (Proc. Roy. Soc. Edinburgh, pp. 501-503, 1879-80). Zbl12.0408.02JFM12.0408.02
  14. [14] R.A. Wilson: Graphs, colourings and the four-colour theorem (Oxford Science Publications, 2002). Zbl1007.05002MR1888337

NotesEmbed ?

top

You must be logged in to post comments.