Distributions and heat equation in S D G

Anders Kock; Gonzalo Reyes

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2006)

  • Volume: 47, Issue: 1, page 2-28
  • ISSN: 1245-530X

How to cite

top

Kock, Anders, and Reyes, Gonzalo. "Distributions and heat equation in $SDG$." Cahiers de Topologie et Géométrie Différentielle Catégoriques 47.1 (2006): 2-28. <http://eudml.org/doc/91701>.

@article{Kock2006,
author = {Kock, Anders, Reyes, Gonzalo},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {distribution; synthetic differential geometry; Cahier topos; smooth topos},
language = {eng},
number = {1},
pages = {2-28},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Distributions and heat equation in $SDG$},
url = {http://eudml.org/doc/91701},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Kock, Anders
AU - Reyes, Gonzalo
TI - Distributions and heat equation in $SDG$
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2006
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 47
IS - 1
SP - 2
EP - 28
LA - eng
KW - distribution; synthetic differential geometry; Cahier topos; smooth topos
UR - http://eudml.org/doc/91701
ER -

References

top
  1. [1] Artin, M., Grothendieck, A. and Verdier, J.-L., Théorie des Topos (SGA 4), Springer LNM269 (1972). Zbl0234.00007MR354653
  2. [2] Chen, K.T.Iterated integrals of differential forms and loop space homology, Annals of Math. (2) 97 (1972), 217-146. Zbl0227.58003MR380859
  3. [3] Dubuc, E., Sur les modèles de la géométrie différentielle synthétique, Cahiers de Topologie et Géometrie Diff.20 (1979), 231-279. Zbl0473.18008MR557083
  4. [4] Frölicher, A., Cartesian Closed Categories and Analysis of Smooth Maps, in "Categories in Continuum Physics", Buffallo1982 (ed. F.W. Lawvere and S.H. Schanuel), SpringerLecture Notes in Math.1174 (1986). Zbl0601.58015MR842916
  5. [5] Frölicher, A., Kriegl, A., Linear Spaces and Differentiation Theory, Wiley1988. Zbl0657.46034MR961256
  6. [6] Kelley, J.L., General Topology, Van Nostrand1955. Zbl0066.16604MR70144
  7. [7] Kelley, J.L., Namioka, I., and co-authors, Linear Topological Spaces, Van Nostrand1963. Zbl0318.46001MR166578
  8. [8] Kock, A.Properties of well-adapted models for synthetic differential geometry, Joum. Pure Appl. Alg.20 (1981), 55-70. Zbl0487.18006MR596153
  9. [9] Kock, A., Synthetic Differential Geometry, Cambridge University Press1981. Zbl0466.51008MR649622
  10. [10] Kock, A., Calculus of smooth functions between convenient vector spaces, Aarhus Preprint Series 1984/85 No. 18. Retyped in http://home.imf.au.dk/kock/CSF.pdf 
  11. [11] Kock, A., Convenient vector spaces embed into the Cahiers topos, Cahiers de Topologie et Géométrie Diff. Catégoriques27 (1986), 3-17. Zbl0596.18005MR845406
  12. [12] Kock, A. and Reyes, G.E., Models for synthetic integration theory, Math. Scand.48 (1981), 145-152. Zbl0485.51017MR631331
  13. [13] Kock, A. and Reyes, G.E., Corrigendum and addenda to "Convenient vector spaces embed", Cahiers de Topologie et Géométrie Diff. Catégoriques28 (1987), 99-110. Zbl0634.18007MR913966
  14. [14] Kock, A. and Reyes, G.E., Some calculus with extensive quantities: wave equation, Theory and Applications of Categories, Vol. 11 (2003), No. 14. Zbl1032.18005MR2005689
  15. [15] Kriegl, A. and Michor, P., TheConvenient Setting of Global Analysis, Amer. Math. Soc.1997. Zbl0889.58001MR1471480
  16. [16] Lavendhomme, R., Basic Concepts of Synthetic Differential Geometry, Kluwer Acad. Publishers1996. Zbl0866.58001MR1385464
  17. [17] Lawvere, F.W., Catgeories of Space and of Quantity, in "The Space of Mathematics. Philosophical, Epistemological and Historical Explorations", DeGruyter, Berlin1992, 14-30. Zbl0846.18001MR1214608
  18. [18] Lawvere, F.W., Volterra's Functionals and Covariant Cohesion of Space, Rendiconti del Circolo Mat. di Palermo Serie II, Suppl. 64 (2000), 201-214. Zbl0979.01014MR1785821
  19. [19] Losik, M.V.Frechet manifolds as diffeological spaces, Soviet Math. (Iz. vuz)5 (1992), 36-42. Zbl0774.58002MR1213569
  20. [20] Moerdijk, I. and and Reyes, G.E., Models for Smooth Infinitesimal Analysis, Springer1991. Zbl0715.18001MR1083355
  21. [21] Nel, L.D., Enriched locally convex structures, Differential Calculus and Riesz representations, Joum. Pure Appl. Alg.42 (1986), 165-184. Zbl0608.46045MR857565
  22. [22] Porta, H. and Reyes, G.E., Variétés à bord et topos lisse, in "Analyse dans les topos lisses" (ed. G.E. Reyes), Rapport de Rechercehes D.M.S. 80-12, Université de Montréal1980. MR649796
  23. [23] Quê, N.V. and Reyes, G.E.Théorie des distribution et théorème d'extension de Whitney, in "Analyse dans les topos lisses" (ed. G.E. Reyes), Rapport de Rechercehes D.M.S. 80-12, Université de Montréal1980. 
  24. [24] Reyes, G.E., A model of SDG in which only trivial distributions with compact support have a density, in http://reyes-reyes.com/gonzalo/recent_work/syntheticdifferential/ 
  25. [25] Reyes, G.E., Embedding manifolds with boundary in smooth toposes, in http://reyes-reyes.com/gonzalo/recent_work/syntheticdifferential/ [26] Zbl1128.51005
  26. [26] Schwartz, L., Théorie des distributions, Tome 1, HermannParis1957. Zbl0037.07301MR209834
  27. [27] Schwartz, L., Méthodes mathématiques pour les sciences physiques, HermannParis1961. Zbl0904.35001MR143360
  28. [28] Seeley, R.T., Extension of C∞ functions defined in a half space, Proc. Amer. Math. Soc.15 (1964), 625-626. Zbl0127.28403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.