Lax 2 -categories and directed homotopy

Marco Grandis

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2006)

  • Volume: 47, Issue: 2, page 107-128
  • ISSN: 1245-530X

How to cite


Grandis, Marco. "Lax $2$-categories and directed homotopy." Cahiers de Topologie et Géométrie Différentielle Catégoriques 47.2 (2006): 107-128. <>.

author = {Grandis, Marco},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {2-categories; bicategories; lax categories; homotopy theory; directed algebraic topology; fundamental categories},
language = {eng},
number = {2},
pages = {107-128},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Lax $2$-categories and directed homotopy},
url = {},
volume = {47},
year = {2006},

AU - Grandis, Marco
TI - Lax $2$-categories and directed homotopy
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2006
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 47
IS - 2
SP - 107
EP - 128
LA - eng
KW - 2-categories; bicategories; lax categories; homotopy theory; directed algebraic topology; fundamental categories
UR -
ER -


  1. [1] A. Bauer - L. Birkedal - D.S. Scott, Equilogical spaces, TheoreticalComputer Science315 (2004), 35-59. Zbl1059.18004MR2072989
  2. [2] J. Bénabou, Introduction to bicategories, in: Reports of the Midwest Category Seminar, Lecture Notes in Mathematics, Vol. 47, Springer, Berlin1967, pp. 1-77. MR220789
  3. [3] F. Borceux, Handbook of categorical algebra, Vol. 1, Cambridge University Press, Cambridge1994. Zbl0803.18001
  4. [4] M.C. Bunge, Coherent extensions and relational algebras, Trans. Amer. Math. Soc.197 (1974), 355-390. Zbl0358.18004MR344305
  5. [5] A. Burroni, T-categories, Cah. Topol. Géom. Différ.12 (1971), 215-321. Zbl0246.18007
  6. [6] E. Cheng - A. Lauda, Higher-dimensional categories: an illustrated guide book, draft version, revised 2004. 
  7. [7] C. Ehresmann, Catégories structurées, Ann. Sci. Ecole Norm. Sup.80 (1963), 349-425. Zbl0128.02002MR197529
  8. [8] C. Ehresmann, Catégories et structures, Dunod, Paris1965. Zbl0192.09803MR213410
  9. [9] L. Fajstrup, M. Raussen, E. Goubault, E. Haucourt, Components of the fundamental category, Appl. Categ. Structures12 (2004), 81-108. Zbl1078.55020MR2057412
  10. [10] E. Goubault, Geometry and concurrency: a user's guide, in: Geometry and concurrency, Math. Structures Comput. Sci.10 (2000), no. 4, pp. 411-425. Zbl0956.68517MR1786469
  11. [11] M. Grandis, Directed homotopy theory, I. The fundamental category, Cah. Topol. Géom. Différ. Catég.44 (2003), 281-316. Zbl1059.55009MR2030049
  12. [12] M. Grandis, Directed combinatorial homology and noncommutative tori (The breaking of symmetries in algebraic topology), Math. Proc. Cambridge Philos. Soc.138 (2005), 233-262. Zbl1068.55004MR2132167
  13. [13] M. Grandis, Inequilogical spaces, directed homology and noncommutative geometry, Homology Homotopy Appl.6 (2004), 413-437. Zbl1079.18001MR2118494
  14. [14] M. Grandis, The shape of a category up to directed homotopy, Theory Appl. Categ.15 (2005) (CT2004), No. 4, 95-146. Zbl1091.55006MR2210577
  15. [15] M. Grandis, Modelling fundamental 2-categories for directed homotopy, Homology Homotopy Appl., to appear. [Dip. Mat. Univ. Genova, Preprint 527 (2005)] Zbl1087.18005MR2205214
  16. [16] G.M. Kelly, On Mac Lane's conditions for coherence of natural associativities, commutativities, etc., J. Algebra1 (1964), 397-402. Zbl0246.18008MR182649
  17. [17] T. Leinster, Higher operads, higher categories, Cambridge University Press, Cambridge2004. Zbl1160.18001MR2094071
  18. [18] S. Mac Lane, Natural associativity and commutativity, Rice Univ. Studies49 (1963), 28-46. Zbl0244.18008MR170925
  19. [19] D. Scott, A new category? Domains, spaces and equivalence relations, Unpublished manuscript (1996). 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.