Synthetic differential geometry of higher-order total differentials

Hirokazu Nishimura

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2006)

  • Volume: 47, Issue: 3, page 207-232
  • ISSN: 1245-530X

How to cite

top

Nishimura, Hirokazu. "Synthetic differential geometry of higher-order total differentials." Cahiers de Topologie et Géométrie Différentielle Catégoriques 47.3 (2006): 207-232. <http://eudml.org/doc/91707>.

@article{Nishimura2006,
author = {Nishimura, Hirokazu},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {synthetic differential geometry; total differentials; tangentials; microcubes},
language = {eng},
number = {3},
pages = {207-232},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Synthetic differential geometry of higher-order total differentials},
url = {http://eudml.org/doc/91707},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Nishimura, Hirokazu
TI - Synthetic differential geometry of higher-order total differentials
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2006
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 47
IS - 3
SP - 207
EP - 232
LA - eng
KW - synthetic differential geometry; total differentials; tangentials; microcubes
UR - http://eudml.org/doc/91707
ER -

References

top
  1. [1] Goerss, P.G. and Jardine, J.F.: Simplicial Homotopy Theory, Progress in Mathematics, 174, Birkhäuser, Basel, 1999. Zbl0949.55001MR1711612
  2. [2] Kock, A.: A simple axiomatics for differentiation, Math. Scand., 40 (1977), 183-193. Zbl0375.12029MR453845
  3. [3] Kock, A.: Taylor series calculus for ring objects of line type, Journal of Pure and Applied Algebra, 12 (1978), 271-293. Zbl0394.14003MR501073
  4. [4] Kock, A.: Synthetic Differential Geometry, London Mathematical Society Lecture Note Series, 51, Cambridge University Press, Cambridge, 1981. Zbl0466.51008MR649622
  5. [5] Lavendhomme, R.: Basic Concepts of Synthetic Differential Geometry, Kluwer, Dordrecht, 1996. Zbl0866.58001MR1385464
  6. [6] Libermann, P.: Sur les prolongements de fibrés principaux et des groupoïdes différentiables banachiques, Analyse Globale, 7-108, PressesUniv. Montréal, Montréal, Quebec, 1971. Zbl0248.53031MR356117
  7. [7] Moerdijk, I. and Reyes, G.E.: Models for Smooth Infinitesimal Analysis, Springer-Verlag, New York, 1991. Zbl0715.18001MR1083355
  8. [8] Navarro, J.A. and Sancho de Salas, J.B.: C∞-Differentiable Spaces, Lecture Notes in Mathematics, 1824, Springer-Verlag, Berlin and Heidelberg, 2003. Zbl1039.58001
  9. [9] Nishimura, H.: Theory of microcubes, International Journal of TheoreticalPhysics, 36 (1997), 1099-1131. Zbl0884.18014MR1452238
  10. [10] Nishimura, H.: Synthetic differential geometry of jet bundles, Bull. Belg. Math. Soc. Simon Stevin, 8 (2001), 639-650. Zbl1030.58001MR1875384
  11. [11] Nishimura, H.: Corrigenda to "Synthetic differential geometry of jet bundles", Bull. Belg. Math. Soc. Simon Stevin, 9 (2002), 473. Zbl1030.58001MR2016586
  12. [12] Nishimura, H.: Holonomicity in sythetic differential geometry of jet bundles, Beiträge zur Algebra und Geometrie, 44 (2003), 471-481. Zbl1044.58006MR2017047
  13. [13] Nishimura, H.: Higher-order preconnections in synthetic differential geometry of jet bundles, Beiträge zur Algebra und Geometrie, 45 (2004), 677-696. Zbl1071.58004MR2093035
  14. [14] Saunders, D.J.: The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989. Zbl0665.58002MR989588

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.