Embedding manifolds with boundary in smooth toposes

Gonzalo E. Reyes

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2007)

  • Volume: 48, Issue: 2, page 83-103
  • ISSN: 1245-530X

How to cite

top

Reyes, Gonzalo E.. "Embedding manifolds with boundary in smooth toposes." Cahiers de Topologie et Géométrie Différentielle Catégoriques 48.2 (2007): 83-103. <http://eudml.org/doc/91717>.

@article{Reyes2007,
author = {Reyes, Gonzalo E.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {2},
pages = {83-103},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Embedding manifolds with boundary in smooth toposes},
url = {http://eudml.org/doc/91717},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Reyes, Gonzalo E.
TI - Embedding manifolds with boundary in smooth toposes
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2007
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 48
IS - 2
SP - 83
EP - 103
LA - eng
UR - http://eudml.org/doc/91717
ER -

References

top
  1. [1] M. Artin, A. Grothendieck and J.L. Verdier, Théorie des topos et cohomologie étale des schémas, Séminaire de Géométrie Algèbrique du Bois-Marie 1963-1964. Lecture Notes in Math,vol 269, Springer-Verlag, (1972). Zbl0234.00007MR354653
  2. [2] E. Dubuc, Sur les modèles de la géométrie différentielle synthétique, Cahiers Top.Geom.Diff, 20, (1979), 234-279. Zbl0473.18008MR557083
  3. [3] V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1974). Zbl0361.57001MR348781
  4. [4] A. Kock, Synthetic Differential Geometry, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney (1981). Zbl1091.51002MR649622
  5. [5] A. Kock, Properties of well-adapted models for synthetic differential geometry, J.Pure Appl. Alg. 20 (1981), 55-70. Zbl0487.18006MR596153
  6. [6] A. Kock and G.E. Reyes, Models for synthetic integration theory, Math.Scand. 48 (1981) 145-152. Zbl0485.51017MR631331
  7. [7] R. Lavendhomme, Basic Concepts of Synthetic Differential Geometry, Kluwer Academic Publishers, Dordrecht, Boston, London (1996). Zbl0866.58001MR1385464
  8. [8] B. Malgrange, Ideals of differentiable fonctions, Oxford Univ. Press (1966) Zbl0177.17902
  9. [9] I. Moerdijk and G.E. Reyes, Models for Synthetic Differential Geometry, Springer-Verlag (1991). Zbl0535.18003MR1083355
  10. [10] J.R. Munkres, Elementary Differential Topology, Annals of Math. Studies 54, Princeton (1966). Zbl0161.20201MR198479
  11. [11] H. Porta and G.E. Reyes, Variétés à bord et topos lisses, Séminaire de Géométrie différentielle synthétique, Rapports de Recherches, Dept. de mathématiques, Université de Montréal (1980). 
  12. [12] A. Weil, Théorie des points proches sur les variétés différentiables, Colloq.Top. et Géom. Diff. Strasbourg 1953, 111-117. Zbl0053.24903MR61455

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.