Weak homotopy equivalences of mapping spaces and Vogt's lemma

Marek Golasiński; Luciano Stramaccia

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2008)

  • Volume: 49, Issue: 1, page 69-80
  • ISSN: 1245-530X

How to cite

top

Golasiński, Marek, and Stramaccia, Luciano. "Weak homotopy equivalences of mapping spaces and Vogt's lemma." Cahiers de Topologie et Géométrie Différentielle Catégoriques 49.1 (2008): 69-80. <http://eudml.org/doc/91728>.

@article{Golasiński2008,
author = {Golasiński, Marek, Stramaccia, Luciano},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {shape theory; strong shape theory; equivariant (strong) shape equivalence; tensored and cotensored Top-category},
language = {eng},
number = {1},
pages = {69-80},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Weak homotopy equivalences of mapping spaces and Vogt's lemma},
url = {http://eudml.org/doc/91728},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Golasiński, Marek
AU - Stramaccia, Luciano
TI - Weak homotopy equivalences of mapping spaces and Vogt's lemma
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2008
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 49
IS - 1
SP - 69
EP - 80
LA - eng
KW - shape theory; strong shape theory; equivariant (strong) shape equivalence; tensored and cotensored Top-category
UR - http://eudml.org/doc/91728
ER -

References

top
  1. [1] S.A. Antonyan, Mapping spaces are equivariant absolute extensors, Vestnik Moskov. Univ. Ser. I, Mat. Mekh. (1981), 22-25. Zbl0478.54012MR648583
  2. [2] S.A. Antonyan and S. Mardešić, Equivariant shape, Fund. Math. 127 (1987), 213-224. Zbl0644.55009MR917146
  3. [3] S.A. Antonyan, Retraction properties of an orbit spaces. II (Russian), Uspekhi Mat. Nauk 48 (1993), no. 6(294), 145-146; translation in Russian Math. Surveys 48 (1993), no. 6. 156-157. Zbl0832.54019MR1264160
  4. [4] S.A. Antonyan, A characterization of equivariant absolute extensors and the equivarian Dugundji Theorem, Houston J. Math. Vol 31, No. 2 (2000), 451-462. Zbl1103.54011MR2132847
  5. [5] S.A. Antonyan and E. Elfving, The equivariant homotopy type of G-ANR'S for compact group actions. Dubrovnik VI - Geométrie Topology 2007, http://atlas-conferences.eom/c/a/u/w/64.htm. Zbl1134.55008
  6. [6] R. Brown, Topology, Ellis Horwood (1988). Zbl0655.55001MR984598
  7. [7] C. Casacuberta and J.L. Rodriguez, On weak honotopy equivalences between mapping spaces, Topology vol. 37, no. 4 (1998), 709-717. Zbl0897.55006MR1607716
  8. [8] J.-M. Cordier and T. Porter, Categorical shape theory, World Scientific (1996). 
  9. [9] D. Deleanu and P.J. Hilton, On the categorical shape of functors, Fund. Math. 97 (1977), 157-176. Zbl0368.18002MR645375
  10. [10] E.D. Dubuc, Kan Extension in Enriched Category Theory, Lecture Notes in Math. 145, Springer-Verlag, Berlin-Heidelberg-New York (1970). Zbl0228.18002MR280560
  11. [11] J. Dydak and S. Nowak, Strong shape for topological spaces, Trans. Amer. Math. Soc. 323(2) (1991), 765-796. Zbl0754.55009MR986690
  12. [12] J. Dydak and S. Nowak, Function spaces and shape theories, Fund. Math. 171 (2002), 117-154. Zbl0989.55008MR1880380
  13. [13] P.H.H. Fantham, E.J. Moore, Groupoid enriched categories and homotopy theory, Canad. J. Math. 3 (1983), 385-416. Zbl0546.55026MR717131
  14. [14] A. Frei, On categorical shape theory, Cahiers Topologie Géom. Différentialle Catég. 17 (3) (1976), 261-294. Zbl0341.55015MR439911
  15. [15] A. Gaszak, The Whitehead theorem in equivariant shape theory, Glasnik Mat. 234 (44) (1989), 417-425. Zbl0711.54009MR1074884
  16. [16] P.S. Gevorgyan, Some questions of equivariant movability, Glasnik Mat. vol. 39 (59) (2004), 185-198. Zbl1053.55006MR2055395
  17. [17] P.J. Higgins, Categories and Groupoids, Van Nostrand Reinhold Math. St., vol. 32 (1971). Zbl0226.20054MR327946
  18. [18] P.S. Hirschorn, Localization of Model Categories, Mathematical Surveys and Monographs 99, Am. Math. Soc., Providence, RI (2003). Zbl1017.55001
  19. [19] R. Lashof, The immersion approach to triangulation and smooothing, Proc. Adv. St. on Alg. Top., Aarhus Universitet (1970). Zbl0236.57010MR281212
  20. [20] S. Mardešić, Strong Shape and Homology, Springer Monographs in Mathematics, Springer Verlag, Berlin-Heidelberg-New York (2000). Zbl0939.55007MR1740831
  21. [21] T. Matumoto, Equivariant CW complexes and shape theory, Tsukuba J. Math. vol. 1 (1989), 157-164. Zbl0683.55005MR1003599
  22. [22] I. Pop, An equivariant shape theory, An. Stint. Univ. "Al. I. Cuza" Iaşi, s. la (1984), 53-67. Zbl0559.55014MR777027
  23. [23] L. Stramaccia, Groupoids and strong shape, Topology and Appl. 153 (2005), 528-539. Zbl1083.55008MR2175367
  24. [24] L. Stramaccia, 2-Categorical aspect of strong shape, Topology and Appl. 153 (2006), 3007-3018. Zbl1100.54012MR2248404
  25. [25] R. Vogt, A note on homotopy equivalences, Proc. Amer. Math. Soc. 32 (1972), 627-629. Zbl0241.55009MR293632
  26. [26] G.W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, New York, Heidelberg, Berlin (1978). Zbl0406.55001MR516508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.