On filtered weighted colimits of presheaves

F. Borceux; J. Rosický

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2008)

  • Volume: 49, Issue: 4, page 243-266
  • ISSN: 1245-530X

How to cite

top

Borceux, F., and Rosický, J.. "On filtered weighted colimits of presheaves." Cahiers de Topologie et Géométrie Différentielle Catégoriques 49.4 (2008): 243-266. <http://eudml.org/doc/91739>.

@article{Borceux2008,
author = {Borceux, F., Rosický, J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {locally presentable; enriched category; weighted limit; flat; filtered colimit},
language = {eng},
number = {4},
pages = {243-266},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On filtered weighted colimits of presheaves},
url = {http://eudml.org/doc/91739},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Borceux, F.
AU - Rosický, J.
TI - On filtered weighted colimits of presheaves
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2008
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 49
IS - 4
SP - 243
EP - 266
LA - eng
KW - locally presentable; enriched category; weighted limit; flat; filtered colimit
UR - http://eudml.org/doc/91739
ER -

References

top
  1. [1] J. Adámek and J. Rosický, Locally presentable and accessible categories, London Math. Soc. Lect. Notes Series 189, Cambridge University Press, 1994 Zbl0795.18007MR1294136
  2. [2] T. Beke, Theories of presheaf type J. Symbolic Logic 69-3 (2004) 923-934. Zbl1072.03039MR2079412
  3. [3] F. Borceux, Handbook of Categorical Algebra, vol. 2, Cambridge Univ. Press, 1994 Zbl0911.18001
  4. [4] F. Borceux, C. Quinteiro, J. Rosický, A theory of enriched sketches, Theory and Appl. of Categories, 4-3, 47-72, 1998 Zbl0981.18006MR1624638
  5. [5] P. Gabriel und F. Ulmer, Lokal Präsentierbare Kategorien, Lect. Notes in Math. 221, Springer, 1971 Zbl0225.18004MR327863
  6. [6] P. Karazeris, J. Rosický and J. Velebil, Completeness of cocompletions, J. Pure Appl. Alg. 196, 229-250, 2005 Zbl1068.18002MR2110524
  7. [7] G.M. Kelly, Structures defined by finite limits in the enriched context, I., Cahiers de Top. et Géom. Diff. XXIII-1 3-42, 1982 Zbl0538.18006MR648793
  8. [8] G.M. Kelly, Basic concepts of enriched category theory, London Math. Soc. Lecture Notes 64, Cambridge University Press, 1982 Zbl0478.18005MR651714

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.