On filtered weighted colimits of presheaves
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2008)
- Volume: 49, Issue: 4, page 243-266
- ISSN: 1245-530X
Access Full Article
topHow to cite
topBorceux, F., and Rosický, J.. "On filtered weighted colimits of presheaves." Cahiers de Topologie et Géométrie Différentielle Catégoriques 49.4 (2008): 243-266. <http://eudml.org/doc/91739>.
@article{Borceux2008,
author = {Borceux, F., Rosický, J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {locally presentable; enriched category; weighted limit; flat; filtered colimit},
language = {eng},
number = {4},
pages = {243-266},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On filtered weighted colimits of presheaves},
url = {http://eudml.org/doc/91739},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Borceux, F.
AU - Rosický, J.
TI - On filtered weighted colimits of presheaves
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2008
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 49
IS - 4
SP - 243
EP - 266
LA - eng
KW - locally presentable; enriched category; weighted limit; flat; filtered colimit
UR - http://eudml.org/doc/91739
ER -
References
top- [1] J. Adámek and J. Rosický, Locally presentable and accessible categories, London Math. Soc. Lect. Notes Series 189, Cambridge University Press, 1994 Zbl0795.18007MR1294136
- [2] T. Beke, Theories of presheaf type J. Symbolic Logic 69-3 (2004) 923-934. Zbl1072.03039MR2079412
- [3] F. Borceux, Handbook of Categorical Algebra, vol. 2, Cambridge Univ. Press, 1994 Zbl0911.18001
- [4] F. Borceux, C. Quinteiro, J. Rosický, A theory of enriched sketches, Theory and Appl. of Categories, 4-3, 47-72, 1998 Zbl0981.18006MR1624638
- [5] P. Gabriel und F. Ulmer, Lokal Präsentierbare Kategorien, Lect. Notes in Math. 221, Springer, 1971 Zbl0225.18004MR327863
- [6] P. Karazeris, J. Rosický and J. Velebil, Completeness of cocompletions, J. Pure Appl. Alg. 196, 229-250, 2005 Zbl1068.18002MR2110524
- [7] G.M. Kelly, Structures defined by finite limits in the enriched context, I., Cahiers de Top. et Géom. Diff. XXIII-1 3-42, 1982 Zbl0538.18006MR648793
- [8] G.M. Kelly, Basic concepts of enriched category theory, London Math. Soc. Lecture Notes 64, Cambridge University Press, 1982 Zbl0478.18005MR651714
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.