Booloïdes

Elie Koudsi; Yves Diers

Diagrammes (1990)

  • Volume: 23, page 15-41
  • ISSN: 0224-3911

How to cite

top

Koudsi, Elie, and Diers, Yves. "Booloïdes." Diagrammes 23 (1990): 15-41. <http://eudml.org/doc/91748>.

@article{Koudsi1990,
author = {Koudsi, Elie, Diers, Yves},
journal = {Diagrammes},
keywords = {non-commutative Boolean algebra; booloids; ideals; filters},
language = {fre},
pages = {15-41},
publisher = {Université Paris 7, Unité d'enseignement et de recherche de mathématiques},
title = {Booloïdes},
url = {http://eudml.org/doc/91748},
volume = {23},
year = {1990},
}

TY - JOUR
AU - Koudsi, Elie
AU - Diers, Yves
TI - Booloïdes
JO - Diagrammes
PY - 1990
PB - Université Paris 7, Unité d'enseignement et de recherche de mathématiques
VL - 23
SP - 15
EP - 41
LA - fre
KW - non-commutative Boolean algebra; booloids; ideals; filters
UR - http://eudml.org/doc/91748
ER -

References

top
  1. [1] E. AYRES, Algèbre moderne (Série Schaum), Paris, McGraw-Hill, ( 1983). 
  2. [2] Y. DIERS, Categories of Boolean sheaves of simple Algebras, Lecture Notes in Mathematics 1187, Springer-Verlag, Berlin/ Heidelberg/ New York/ Tokyo ( 1980). Zbl0594.18007MR841523
  3. [3] Y. DIERS, Une description axiomatique des catégories de faisceaux de structures algébriques sur les espaces topologiques booléens, Advances in Mathematics, 47, ( 1983), pp.258-299. Zbl0513.18008MR695043
  4. [4] R. FAURE, E. HEURGON, Structures ordonnées et algèbres de Boole, Paris, Gauthiers-Villars, ( 1971). Zbl0219.06001MR277440
  5. [5] K.H. HOFMANN, Representations of algebras by continuous sections, Bull. Amer. Math. Soc 78, ( 1972), pp. 291-373. Zbl0237.16018MR347915
  6. [6] J.F. KENNISON, Triples and compact sheaf representations, J. Pure. Appl. Algebra 20 ( 1981), pp.13-38. Zbl0457.18011MR596151
  7. [7] J.F. KENNISON, Structure and constructure for strongly regular rings, J. Pure and Appl. Algebra 5 ( 1974), pp.321-332. Zbl0298.18003MR371987
  8. [8] F.W. LAWVERE, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 ( 1963), pp.869-873. Zbl0119.25901MR158921
  9. [9] N.H. MacCOY et D. MONTGOMERY, A representation of generalised Boolean rings, Duke Math. J. 3, ( 1937), pp.455-459. MR1546001JFM63.0026.04
  10. [10] J.V. NEUMANN, Regular Rings, Proc. Nat. Acad. Sci. U.S.A. 22 ( 1936), pp.707-713. JFM62.1103.03
  11. [11] N. PERMINGEAT, D. GLAUDE, Algèbre de Boole, Paris, Masson, ( 1988.). MR943831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.