On Morita’s -adic -function
Groupe de travail d'analyse ultramétrique (1977-1978)
- Volume: 5, page 1-6
Access Full Article
topHow to cite
topBaesky, Daniel. "On Morita’s $p$-adic $\Gamma $-function." Groupe de travail d'analyse ultramétrique 5 (1977-1978): 1-6. <http://eudml.org/doc/91822>.
@article{Baesky1977-1978,
author = {Baesky, Daniel},
journal = {Groupe de travail d'analyse ultramétrique},
keywords = {P-Adic Gamma-Function; P-Adic Zeta-Function},
language = {eng},
pages = {1-6},
publisher = {Secrétariat mathématique},
title = {On Morita’s $p$-adic $\Gamma $-function},
url = {http://eudml.org/doc/91822},
volume = {5},
year = {1977-1978},
}
TY - JOUR
AU - Baesky, Daniel
TI - On Morita’s $p$-adic $\Gamma $-function
JO - Groupe de travail d'analyse ultramétrique
PY - 1977-1978
PB - Secrétariat mathématique
VL - 5
SP - 1
EP - 6
LA - eng
KW - P-Adic Gamma-Function; P-Adic Zeta-Function
UR - http://eudml.org/doc/91822
ER -
References
top- [1] Amice ( Y.). - Interpolation p-adique, Bull. Soc. math.France, t. 92, 1964, p. 117-180 (Thèse Sc. math.Paris, 1964). Zbl0158.30201MR188199
- [2] Amice ( Y.). -Les nombres p-adiques. - Paris,Presses universitaires de France, 1975 (Collection Sup, “Le Mathématicien”, 14). Zbl0313.12104
- [3] Barsky ( D.). - Transformation de Cauchy p-adique et algèbre d'Iwasawa, Math. Annalen, t. 232, 1978, p. 255-266. Zbl0352.12014MR476705
- [4] Boyarsky ( B.). - p-adic gamma function and Dwork cohomology (Preprint).
- [5] Diamond ( J.). - On the value of p-adic L functions at positive integers (to appear). Zbl0463.12007MR550294
- [6] Dwork ( B.). - On the rationnality of the zeta function of an algebraic variety, Amer. J. of Math., t. 82, 1960, p. 631-648. Zbl0173.48501MR140494
- [7] Katz ( N.). - Graduate course, at Princeton University, Spring 1978.
- [8] Koblitz ( N.). - Communication unpublished.
- [9] Monsky ( P.). - p-adic analysis and zeta functions. - Tokyo, Kinokuniya Book-Store, 1970 (Lectures in Mathematics ; Kyoto University, 4). Zbl0256.14009MR282981
- [10] Morita ( Y.). - A p-adic analogue of the Γ-function, J. Fac. Sc., University Tokyo, Section 1, t. 22, 1975, p. 255-266. Zbl0308.12003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.