Le théorème de MacIntyre sur les ensembles définissables dans les corps p -adiques

Luc Bélair

Groupe de travail d'analyse ultramétrique (1985-1986)

  • Volume: 13, page 15-30

How to cite

top

Bélair, Luc. "Le théorème de MacIntyre sur les ensembles définissables dans les corps $p$-adiques." Groupe de travail d'analyse ultramétrique 13 (1985-1986): 15-30. <http://eudml.org/doc/91948>.

@article{Bélair1985-1986,
author = {Bélair, Luc},
journal = {Groupe de travail d'analyse ultramétrique},
keywords = {quantifier elimination; p-adic numbers; semi-algebraic set},
language = {fre},
pages = {15-30},
publisher = {Secrétariat mathématique},
title = {Le théorème de MacIntyre sur les ensembles définissables dans les corps $p$-adiques},
url = {http://eudml.org/doc/91948},
volume = {13},
year = {1985-1986},
}

TY - JOUR
AU - Bélair, Luc
TI - Le théorème de MacIntyre sur les ensembles définissables dans les corps $p$-adiques
JO - Groupe de travail d'analyse ultramétrique
PY - 1985-1986
PB - Secrétariat mathématique
VL - 13
SP - 15
EP - 30
LA - fre
KW - quantifier elimination; p-adic numbers; semi-algebraic set
UR - http://eudml.org/doc/91948
ER -

References

top
  1. [A-K] J. Ax et S. Kochen. Diophantine Problems over Local Fields.II., Amer.Jour.Math.87 (1965) , pp.631-648. Zbl0136.32805MR184931
  2. —. Diophantine Problems over Local Fields.III, Annals of Math.83 (1966) , pp.437-456. Zbl0223.02050
  3. [B] L. Bélair. Topics in the Model Theory of p-Adic Fields and Spectra, thèse, Yale, 1985. 
  4. [B-S] L. Bröcker et J.H. Schinke. On the L-Adic Spectrum, pré-publication, 1985. 
  5. [C-R] M. Coste et M.-F. Coste-Roy. La topologie du spectre réel,dans Ordered Fields & Real Algebraic Geometry, Contemporary Math. Vol.8, AMS, 1982. Zbl0485.14007MR653174
  6. [D] J. Denef. The Rationality of the Poincaré Series Associated to the p-Adic Points on a Variety, Inventiones Math.77 (1984), pp.1-23. Zbl0537.12011MR751129
  7. [D1] —. p-Adic Semi-Algebraic Sets and Cell Decompositions, pré-publication. 
  8. [D2] —. On the Evaluation of Certain p-Adic Integrals, PM Séminaire de théorie des nombres, Paris1983-84. Zbl0597.12021
  9. [Ek] P. Eklof. Ultraproducts for Algebraists, dans Handbook of Math. Logic éd. par J.Barwise, North Holland, 1977. MR540012
  10. [E] Y. Ershov. On Elementary Theories of Local Fields, Algebra i Logika4 (1965) No.2, pp.5-30. Zbl0274.02021MR207686
  11. [M] A. Macintyre. On Definable Subsets of p-Adic Fields, Jour.Symb.Logic41 (1976) No.3, pp.605-610. Zbl0362.02046MR485335
  12. [P-R] A. Prestel et P. Roquette. Formally p-Adic Fields, LNM1050, Springer, 1984. Zbl0523.12016MR738076
  13. [Ri] P. Ribenboim. Théorie des valuations, Presses de l'U. de Montreal, 1964. Zbl0139.26201MR249425
  14. [Ro] A. Robinson. Complete Theories, North Holland, 1956. Zbl0070.02701MR75897
  15. [R] E.P. Robinson. Affine Schemes and p-Adic Geometry, thèse, Cambridge, 1983. 
  16. —. The p-Adic Spectrum, Jour. Pure & Appl. Alg.40 (1986) No.3. 
  17. [S] J.H. Schinke. Das (p,d)-adische Spektrum, thèse, Münster, 1985. 
  18. [W] V. Weispfenning. Quantifier Elimination and Decision Procedure for Valued Fields, dans Logic Colloquium, Aachen1983, LNM, Springer, 1986. Zbl0584.03022MR775704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.