Sur le théorème de Morera -adique
Groupe de travail d'analyse ultramétrique (1987-1988)
- Volume: 15, page 29-34
Access Full Article
topHow to cite
topKhoai, Ha Huy. "Sur le théorème de Morera $p$-adique." Groupe de travail d'analyse ultramétrique 15 (1987-1988): 29-34. <http://eudml.org/doc/91971>.
@article{Khoai1987-1988,
author = {Khoai, Ha Huy},
journal = {Groupe de travail d'analyse ultramétrique},
language = {fre},
pages = {29-34},
publisher = {Secrétariat mathématique},
title = {Sur le théorème de Morera $p$-adique},
url = {http://eudml.org/doc/91971},
volume = {15},
year = {1987-1988},
}
TY - JOUR
AU - Khoai, Ha Huy
TI - Sur le théorème de Morera $p$-adique
JO - Groupe de travail d'analyse ultramétrique
PY - 1987-1988
PB - Secrétariat mathématique
VL - 15
SP - 29
EP - 34
LA - fre
UR - http://eudml.org/doc/91971
ER -
References
top- [1] W. Adams. Transcendental numbers in the p-adic domain. Amer. J. Math.88 (1966) 279-308. Zbl0144.29301MR197399
- [2] J. Coates. An effective p-adic analogue of a theorem of ThueActa Arith.15 (1969), 279-305. Zbl0221.10025MR242768
- [3] N. Koblitz. p-adic analysis : a short course on recent works. London lecture Notes in Math, N42. Zbl0439.12011
- [4] L.G. Schnirelman. On functions in normed algebraically closed division rings. Isvestija AN SSSR2 (1938) 417-498.
- [5] T.N. Shorey : Algebraic independence of certain numbers in the p-adic domain. indag. Math.34 (1971) 1-7. MR316393
- [6] R. Tijdeman. Indag. Math.33 (1971) 1-7. MR286986
- [7] M.M. Vishik. Some applications of the Schnirelman integral in non-archimedean analysisUspehi Math. nauk., 34 (1979) 223-224. Zbl0426.46059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.