Sur la théorie de Nevanlinna p -adique

Ha Huy Khoai

Groupe de travail d'analyse ultramétrique (1987-1988)

  • Volume: 15, page 35-40

How to cite

top

Khoai, Ha Huy. "Sur la théorie de Nevanlinna $p$-adique." Groupe de travail d'analyse ultramétrique 15 (1987-1988): 35-40. <http://eudml.org/doc/91972>.

@article{Khoai1987-1988,
author = {Khoai, Ha Huy},
journal = {Groupe de travail d'analyse ultramétrique},
language = {fre},
pages = {35-40},
publisher = {Secrétariat mathématique},
title = {Sur la théorie de Nevanlinna $p$-adique},
url = {http://eudml.org/doc/91972},
volume = {15},
year = {1987-1988},
}

TY - JOUR
AU - Khoai, Ha Huy
TI - Sur la théorie de Nevanlinna $p$-adique
JO - Groupe de travail d'analyse ultramétrique
PY - 1987-1988
PB - Secrétariat mathématique
VL - 15
SP - 35
EP - 40
LA - fre
UR - http://eudml.org/doc/91972
ER -

References

top
  1. [1] Hà Huy Khoai. On p-adic meromorphic functions. Duke Math. J. , Vol 50 (1983), 695-711. Zbl0544.30039MR714825
  2. [2] Hà Huy Khoai. p-adic Interpolation and continuation of p-adic functions. SpringerLecture Notes in Math., N° 1013 (1983). Zbl0542.12009MR738098
  3. [3] Hà Huy Khoai. On p-adic Interpolation. AMS translation Soviet Math. Notes, N°26, 1979, Vol.1. Zbl0429.12012MR553568
  4. [4] Hà Huy Khoai and My Vinh Quang. On p-adic-Nevanlinna theory. Proceedings of the 13th Rolf Nevanlinna Colloquium, Joensuu, Finland1987L. SpringerLecture Notes in Math, N° Zbl0673.30035
  5. [5] S. Lang. Introduction to complex hyperbolic spaces. Springer, 1986. Zbl0628.32001MR886677
  6. [6] M. Lazard. Les zéros d'une fonction analytique d'une variable sur un corps valué complet. Publications Math. IHES, N°14. Zbl0119.03701
  7. [7] My Vinh Quang. Some applications of p-adic Nevanlinna theory. Acta Math. Vietnamica, 1988. Zbl0744.30037
  8. [8] J. Oesterlé. Nouveaux approches au "théorème de Fermat". Séminaire Bourbaki, Fév. 1988. Zbl0668.10024
  9. [9] Reyssat. Analogue arithmétique de la théorie de Nevanlinna. Séminaire d'Analyse complexe IHP, Janvier 1988. 
  10. [10] P. Vojta. Diophantine approximations and Value distribution Theory. SpringerLecture Notes in Math, N° 1239, 1987. Zbl0609.14011MR883451

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.