Complexity of theorem-proving procedures : some general properties

G. Longo; M. Venturini Zilli

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1974)

  • Volume: 8, Issue: R3, page 5-18
  • ISSN: 0988-3754

How to cite

top

Longo, G., and Venturini Zilli, M.. "Complexity of theorem-proving procedures : some general properties." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 8.R3 (1974): 5-18. <http://eudml.org/doc/92011>.

@article{Longo1974,
author = {Longo, G., Venturini Zilli, M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
language = {eng},
number = {R3},
pages = {5-18},
publisher = {EDP-Sciences},
title = {Complexity of theorem-proving procedures : some general properties},
url = {http://eudml.org/doc/92011},
volume = {8},
year = {1974},
}

TY - JOUR
AU - Longo, G.
AU - Venturini Zilli, M.
TI - Complexity of theorem-proving procedures : some general properties
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1974
PB - EDP-Sciences
VL - 8
IS - R3
SP - 5
EP - 18
LA - eng
UR - http://eudml.org/doc/92011
ER -

References

top
  1. [1] AUSIELLO G., Complexity hounded universal fonctions, Conference Record of the International Symposium on Theory of machines and Computations, Haifa, 1971. 
  2. [2] BLUM M., A machine independent theory of complexity of recursive fonction, JACM 14, 1967, pp. 322-336. Zbl0155.01503MR235912
  3. [3], BUNDY A.There is no best proof procedure, ACM SIGART Newsletter, Dec. 1971, pp. 6-7. 
  4. [4] COOK S. A., The complexity of theorem-proving procedures, III Annual Symposium on Theory of computation, Ohio, 1971, pp. 151-158. Zbl0253.68020
  5. [5] HARTMANIS J. and HOPCROFT J., An overview of the theory of computational complexity, JACM 18, 1971, pp. 444-475. Zbl0226.68024MR288028
  6. [6] KOWALSKI R. and KUEHNER D., Linear resolution with selection fonction, Artificial Intelligence 2, 1971, pp. 227-260. Zbl0234.68037MR436677
  7. [7] LYNCH N., Recursive approximation to the halting problem, Rep. of the Tufts University, Medford, Masss., Jan. 1973, pp. 15. 
  8. [8] MELTZER B., Prolegomena to a Theory of efficiency of proof procedures, in ArtificialIntelligence and Heuristic programs, American Elzevier, 1971, pp. 15-33. 
  9. [9] MEYER A. R., An open problem on creative sets, SIGACT News, April 1973, pp. 20. 
  10. [10] RABIN M. O., Degrees of difficulty of Computing a fonction and a partial ordering of recursive sets, Tech, report n. 2, Jerusalem, 1960, pp. 18. 
  11. [11] ROGERS H., Theory of recursive functions and effective computability, McGraw Hill, 1967, pp. 472. Zbl0183.01401MR224462

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.