Bottom-up computation of recursive programs

G. Berry

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1976)

  • Volume: 10, Issue: R1, page 47-82
  • ISSN: 0988-3754

How to cite

top

Berry, G.. "Bottom-up computation of recursive programs." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 10.R1 (1976): 47-82. <http://eudml.org/doc/92028>.

@article{Berry1976,
author = {Berry, G.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
language = {eng},
number = {R1},
pages = {47-82},
publisher = {EDP-Sciences},
title = {Bottom-up computation of recursive programs},
url = {http://eudml.org/doc/92028},
volume = {10},
year = {1976},
}

TY - JOUR
AU - Berry, G.
TI - Bottom-up computation of recursive programs
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1976
PB - EDP-Sciences
VL - 10
IS - R1
SP - 47
EP - 82
LA - eng
UR - http://eudml.org/doc/92028
ER -

References

top
  1. 1. G. BERRY, Calculs ascendants des programmes récursifs. Thèse de 3e cycle, Université Paris VII, 1976. 
  2. 2. R. BURSTALL. Proving Properties of Programs by Structural Induction. Computer Journal, vol. 12, 1969, p. 41-48. Zbl0164.46202
  3. 3. S. COOK and R. SETHI. Storage Requirements for Deterministic Polynomial Time Recognizible Languages. Proc. 6th annual symposium on theory of Computing, Seattle, Washington, 1974, p. 33-39. Zbl0412.68078MR421161
  4. 4. D. LUCKHAM, D. PARK and M. PATERSON. On Formalised Computer Programs. Journal of Computer and System Sciences, vol. 4, No. 3, 1970, p. 220-250. Zbl0209.18704MR275717
  5. 5. Z. MANNA. Mathematical theory of Computation. McGraw-Hill, (Computer science series), 1975. Zbl0353.68066MR400771
  6. 6. Z. MANNA and J. VUILLEMIN. Fixpoint Approach to the Theory of Computation. Comm. ACM, vol. 15, No. 7, 1972, p. 528-536. Zbl0245.68011MR440993
  7. 7. R. MILNER. Implementation and Applications of Scott's Logic for Computable Functions. Proceedings ACM Conference on Proving assertions about programs, Las Cruces, New Mexico, 1972, p. 1-5. 
  8. 8. J. H. MORRIS. Another Recursion Induction Principle. Comm. ACM, vol. 14, No. 5, 1971, p. 351-354. Zbl0226.68026MR290963
  9. 9. M. NIVAT. On the Interpretation of Recursive Program Schemes, Symposia Mathematica, Vol. XV, Instituto Nazionale di Alta Matematica, Italy, 1975, p. 255-281. Zbl0346.68041MR391563
  10. 10. D. PARK. Fixpoint Induction and Proofs of Program Properties, Machine Intelligence 5, Edinburgh University press, 1969, p. 59-77. Zbl0219.68007MR323149
  11. 11. H. G. RICE. Recursion and Iteration. Comm. ACM, vol. 8, No. 2, 1965, p. 114-115. Zbl0129.10304
  12. 12. D. SCOTT. Outline of a Mathematical Theory of Computation. Programming research group monography n° 2, Oxford University, 1970. 
  13. 13. D. SCOTT and C. STRACHEY. Towards a Mathematical Semantles for Programming Languages. Programming research group monography No. 6, Oxford University, 1972. 
  14. 14. J. VUILLEMIN. Proof Techniques for Recursive Programs. Ph. D. thesis, Computer Science Department, Stanford University, U.S.A., 1973. 
  15. 15. J. VUILLEMIN. Syntaxe, sémantique et axiomatique d'un language de programmation simple. Thèse de doctorat d'état ès-sciences mathématiques, Université Paris VI, Paris, 1974. Zbl0327.68006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.