Complexité de la réduction en logique combinatoire

Richard Canal

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1978)

  • Volume: 12, Issue: 4, page 339-367
  • ISSN: 0988-3754

How to cite

top

Canal, Richard. "Complexité de la réduction en logique combinatoire." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 12.4 (1978): 339-367. <http://eudml.org/doc/92085>.

@article{Canal1978,
author = {Canal, Richard},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {weak combinatory logic; reduction complexity; rewriting process; reduction of applicative combinations of proper combinators; upper and lower bounds on the length of the reduction; normal form},
language = {fre},
number = {4},
pages = {339-367},
publisher = {EDP-Sciences},
title = {Complexité de la réduction en logique combinatoire},
url = {http://eudml.org/doc/92085},
volume = {12},
year = {1978},
}

TY - JOUR
AU - Canal, Richard
TI - Complexité de la réduction en logique combinatoire
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1978
PB - EDP-Sciences
VL - 12
IS - 4
SP - 339
EP - 367
LA - fre
KW - weak combinatory logic; reduction complexity; rewriting process; reduction of applicative combinations of proper combinators; upper and lower bounds on the length of the reduction; normal form
UR - http://eudml.org/doc/92085
ER -

References

top
  1. 1. G. AUSIELLO, Abstract Computational Complexity and Cycling Computations, J.C.S.S., vol. 5, 1971, p. 118-128. Zbl0225.02025MR281618
  2. 2. G. AUSIELLO, Computational Complexity. Main Results and a Commentary, Seminaire I.R.I.A., 1972. 
  3. 3. G. AUSIELLO, Complessita di Calcolo delleFunzioni. Boringhieri, Ed., 1975. 
  4. 4. C. BATINI et A. PETTOROSSI, On Subrecursiveness in Weak Combinatory Logic, in λ Calculus and Computer Science Theory, Proceedings of the Symposium held in Rome, C. Bohm, Ed., Springer Verlag, 1975, p. 288-297. Zbl0332.02033MR479987
  5. 5. M. BLUM, A Machine Independent Theory of the Complexity of Recursive Functions, J.A.C.M., vol. 14, n° 2, 1967, p. 322-336. Zbl0155.01503MR235912
  6. 6. C. BOHMet M. DEZANI-CIANCAGLINI, λ-Terms as Total or Partial Functions on Normal Forms, in λ-Calculus and Computer Science Theory, Proceedings of the Symposium held in Rome, C. Bohm, Ed., Springer Verlag, 1975, p. 96-121. Zbl0342.02017MR485296
  7. 7. C. BOHM et M. DEZANI-CIANCAGLINI, Combinatorial Problems, Combinator Equations and Normal Forms, in Automata, Languages and Programming, 2nd Colloquium, University of Saarbrücken, J. Loeckx, Ed., Springer Verlag, 1974, p. 185-199. Zbl0309.68037MR429500
  8. 8. C. BOHM, M. COPPOet M. DEZANI-CIANCAGLINI, Terminations Tests inside λ-Calculus, in Automata, Languages and Programming, Fourth Colloquium, University of Turku, A. Salomaa et M. Steinby, Ed., Springer Verlag, 1977, p. 95-110. Zbl0358.02025MR465807
  9. 9. C. BOHM, The CUCH as a Formal and Description Language, in Formal Languages, Description Languages for Computer Programming, T. B. Steel, Ed., North Holland, 1966, p. 179-197, 
  10. 10. R. CANAL et J. VIGNOLLE, Effet cachant et complexité de réduction en logique combinatoire, Rapport interne Université Paul-Sabatier, Laboratoire « Langages et Systèmes Informatiques », 1978. 
  11. 11. R. CANAL, Étude de la complexité de calcul en logique combinatoire, Thèse 3e Cycle, Université Paul-Sabatier, 1978. Zbl0432.03012
  12. 12. H. B. CURRY, R. FEYS et W. CRAIG, Combinatory Logic, vol. 1, North Holland, Amsterdam, 1968. Zbl0175.27601MR244051
  13. 13. M. DEZANI-CIANCAGLINI et S. RONCHI DELLA ROCA, Computational Complexity and Structures of λ-Terms, in Programmation, Proceedings of the 2nd International Symposium on Programming, B. Robinet, Ed., Dunod, Paris, 1976, p. 160-181. 
  14. 14. J. R. HINDLEY, B. LERCHERet J. P. SELDIN, Introduction to CombinatoryLogic, Cambridge University Press, 1972. Zbl0269.02005
  15. 15. P. J. LANDIN, A Lambda-Calculus Approach, Advances in Programming and Non Numerical Computation, Pergamon Press, 1966, p. 97-141. Zbl0203.16406
  16. 16. J. J. LÉVY, Réductions correctes et optimales dans le Lambda-Calcul, Thèse de Doctorat, Université Paris-VII, 1978. 
  17. 17. J. MCCARTHY, Recursive Functions of Symbolic Expressions and their Computat by Machine, Part I, Comm. A.C.M., vol. 3, n° 4, 1960, p. 184-195. Zbl0101.10413
  18. 18. L. NOLIN, Logique Combinatoire et Algorithmes, C.R. Académie des Sciences, Paris, t. 272, p. 1435-1438 et p. 1485-1488, série A, 1971. Zbl0217.00805MR285394
  19. 19. A. PETTOROSSI, Sulla Terminazione in Classi Subricorsive di Algorithmi, A.I.C.A., Congress Genova, 1975. 
  20. 20. A. PETTOROSSI, Combinators as Tree-transducers, Colloque sur les Arbres en Algèbre et en Programmation, Lille, 1977. Zbl0364.94033
  21. 21. J. C. REYNOLDS, A simple Typeless Language Based on the Principle of Completeness and the Reference Concept, Comm. A.C.M., vol. 13, n° 5, 1970, p. 308-319. Zbl0193.15101
  22. 22. B. ROBINET, Un modèle fonctionnel des structures de contrôle, R.A.I.R.O. Informatique théorique, vol. 11, n° 3, 1977, p. 213-236. Zbl0389.68015MR502167
  23. 23. J. B. ROSSER, A Mathematical Logic without Variables, Annals of Maths, n° 2, 36, 1935, p. 127-150. Zbl0011.00201MR1503213JFM61.0056.02
  24. 24. C. RUGGIU, De l'organigramme à la formule, Thèse de Doctorat, Université Pierre-et-Marie-Curie, Paris, 1974. 
  25. 25. L. E. SANCHIS, Types of Combinatory Logic, Notre-Dame Journal of Formal Logic (5). 1964, p. 161-180. Zbl0158.24704MR205849
  26. 26. J. VUILLEMIN, Proof Techniques for Recursive Programs, Ph. D. Thesis, Stanford, 1973. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.