Some properties of decomposition ordering, a simplification ordering to prove termination of rewriting systems
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1982)
- Volume: 16, Issue: 4, page 331-347
- ISSN: 0988-3754
Access Full Article
topHow to cite
topLescanne, Pierre. "Some properties of decomposition ordering, a simplification ordering to prove termination of rewriting systems." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 16.4 (1982): 331-347. <http://eudml.org/doc/92169>.
@article{Lescanne1982,
author = {Lescanne, Pierre},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {term rewriting systems; equational theories; recursive path ordering; decomposition ordering; termination; left-weighted terms; recursive lexicographic ordering},
language = {eng},
number = {4},
pages = {331-347},
publisher = {EDP-Sciences},
title = {Some properties of decomposition ordering, a simplification ordering to prove termination of rewriting systems},
url = {http://eudml.org/doc/92169},
volume = {16},
year = {1982},
}
TY - JOUR
AU - Lescanne, Pierre
TI - Some properties of decomposition ordering, a simplification ordering to prove termination of rewriting systems
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1982
PB - EDP-Sciences
VL - 16
IS - 4
SP - 331
EP - 347
LA - eng
KW - term rewriting systems; equational theories; recursive path ordering; decomposition ordering; termination; left-weighted terms; recursive lexicographic ordering
UR - http://eudml.org/doc/92169
ER -
References
top- 1. N. DERSHOWITZ, Ordering for Term Rewriting Systems, Proc. 20th Symposium on Foundations of Computer Science, 1979, pp. 123-131, also in Theoritical Computer Science, Vol. 17, 1982, pp. 279-301. Zbl0525.68054MR648438
- 2. N. DERSHOWITZ, A note on Simplification Orderings, Inform. Proc. Ltrs., Vol. 9, 1979, pp. 212-215. Zbl0433.68044MR552535
- 3. J. FRANÇON, G. VIENNOT and J. VUILLEMIN, Description and Analysis of an Efficient Priority Queues Representation, Proc. 19th Symposium of Foundations of Computer Science, 1978, pp. 1-7. MR539825
- 4. G. HUET, A Complete Proof of Correctness of the Knuth-Bendix Completion Algorithm, Rapport INRIA 25, 1980. Zbl0465.68014MR636177
- 5. G. HUET and J. HULLOT, Proof by Induction in Equational Theories with Constructors, Proc. 21th Symposium on Foundations of Computer Science, 1980. Zbl0532.68041
- 6. G. HUET and D. C. OPPEN, Equations and Rewrite Rules: a Survey, in Formal Languages perspectives and Open Problems, R. BOOK, Ed., Academic Press, 1980.
- 7. D. E. KNUTH, The Art of Computer Programming. Vol. 1: Fundamental Algorithms, Addison Wesley, Reading, Mass., 1968. Zbl0191.17903MR378456
- 8. D. E. KNUTH and P. BENDIX, Simple Word Problems in Universal Algebra, in Computational Problems in Abstract Algebra, J. LEECH, Ed., Pergamon Press, 1970, pp. 263-297. Zbl0188.04902MR255472
- 9. J. B. KRUSKAL, Well-Quasi-Ordering, the Tree Theorem, and Vazsonyi's Conjecture, Trans. Amer. Math. Soc., Vol. 95, 1960, pp. 210-225. Zbl0158.27002MR111704
- 10. P. LESCANNE, Two Implementations of the Recursive Path Ordering on Monadic Terms, 19th Annual Allerton Conf. on Communication, Control, and Computing, Allerton House, Monticello, Illinois, 1981.
- 11. P. LESCANNE, Decomposition Ordering as a Tool to prove the Termination of Rewriting Systems, 7th IJCAI, Vancouver, Canada, 1981, pp. 548-550.
- 12. P. LESCANNE and F. REINIG, A Well-Founded Recursively Defined Ordering on First Order Terms, Centre de Recherche en Informatique de Nancy, France, CRIN 80-R-005.
- 13. D. L. MUSSER, On Proving Inductive Properties of Abstract Data Types, Proc. 7th ACM Symposium on Principles of Programming Languages, 1980.
- 14. C. St. J. A. NASH-WILLIAM, On Well-Quasi-Ordering on Finite Trees, Proc. Cambridge Philos. Soc., Vol. 60, 1964, pp. 833-835. Zbl0122.25001MR153601
- 15. D. PLAISTED, Well-Founded Orderings for Proving Termination of Systems of Rewrite Rules, Dept of Computer Science Report 78-932, U. of Illinois at Urbana-Champaign, July 1978.
- 16. D. PLAISTED, A Recursively Defined Ordering for Proving Termination of Term Rewriting Systems, Dept of Computer Science Report 78-943, U. of Illinois at Urbana-Champaign, Sept. 1978.
- 17. F. REINIG, Les ordres de décomposition: un outil incrémental pour prouver la terminaison finie de systèmes de réécriture de termes, Thèse, Université de Nancy, 1981.
- 18. J.-P. JOUANNAUD and P. LESCANNE, On Multiset Orderings, in Inform. Proc. Ltrs., Vol. 15, 1982, pp. 57-63. Zbl0486.68041MR675869
- 19. J.-P. JOUANNAUD, P. LESCANNE and F. REINIG, Recursive Decomposition Ordering, IFIP Conf. on Formal Description of Programming Concepts, Garmisch-Partenkirchen, Germany, 1982. Zbl0513.68026MR787625
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.