Right and left invertibility in -calculus
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1983)
- Volume: 17, Issue: 1, page 71-88
- ISSN: 0988-3754
Access Full Article
topHow to cite
topMargaria, I., and Zacchi, M.. "Right and left invertibility in $\lambda - \beta $-calculus." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 17.1 (1983): 71-88. <http://eudml.org/doc/92179>.
@article{Margaria1983,
author = {Margaria, I., Zacchi, M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {lambda calculus; left inverse; direct approximation; Boehm tree; lambda- beta calculus; normal forms; right inverses; graph model},
language = {eng},
number = {1},
pages = {71-88},
publisher = {EDP-Sciences},
title = {Right and left invertibility in $\lambda - \beta $-calculus},
url = {http://eudml.org/doc/92179},
volume = {17},
year = {1983},
}
TY - JOUR
AU - Margaria, I.
AU - Zacchi, M.
TI - Right and left invertibility in $\lambda - \beta $-calculus
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1983
PB - EDP-Sciences
VL - 17
IS - 1
SP - 71
EP - 88
LA - eng
KW - lambda calculus; left inverse; direct approximation; Boehm tree; lambda- beta calculus; normal forms; right inverses; graph model
UR - http://eudml.org/doc/92179
ER -
References
top- 1. H. P. BARENDREGT, The Lambda Calculus, its Sintax and Semantics, North-Holland, Amsterdam, 1981. Zbl0467.03010MR622912
- 2. J. BERGSTRA and J. W. KLOP, Invertible Terms in the Lambda Calculas, Theor., Comp. Sci., vol 9, 1980, p. 27-38. MR535122
- 3. C. BÖHM, Alcune proprietà délie formefi β-η-normalinel λ-k calcolo. Pubblicazioni dell'Istituto per le Applicazioni del Calcolo, n. 696, Roma, 1968.
- 4. C. BÖHM and M. DEZANI-CIANCAGLINI, Combinatorial problems, combinator equations and normal forms, Springer L. N. C. S., n° 14, 1974, p. 185-199. Zbl0309.68037MR429500
- 5. A. CHURCH, Combinatory logic as a semigroup (abstract), Bull. Amer. Math. Soc., vol. 43, 1937, p. 333.
- 6. A. CHURCH, The Calculi of Lambda Conversion, Princeton University Press, Princeton, 1941. Zbl0026.24205MR5274JFM67.0041.01
- 7. H. B. CURRY and R. FEYS, Combinatory Logic, vol. 1, North-Holland, Amsterdam, 1958. Zbl0081.24104MR94298
- 8. M. DEZANI-CIANCAGLINI, Pattern-Matching Problems inside λ-β-η calculus, Proceedings Informatica 76, Bied, 1976.
- 9. M. DEZANI-CIANCAGLINI, Characterization of normal forms possessing inverse in the ʋ-β-η calculus, Theor. Comput. Sci., vol. 2, 1976, p. 323-337. Zbl0368.02028MR444444
- 10. J. J. LÉVY, An algebraic interpretation of the λ-β-k-Calculus and an application of a labelled λ-Calculus, Theor. Comput. Sci., vol. 2, 1976, p. 97-114. Zbl0335.02016MR409129
- 11. C. P. WADSWORTH, The relation between computational and denotational properties for Scott's D√-models of the lambda-calculus, SIAM J. Comput., vol. 5, 1976, p. 488-521. Zbl0346.02013MR505308
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.