Right and left invertibility in λ - β -calculus

I. Margaria; M. Zacchi

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1983)

  • Volume: 17, Issue: 1, page 71-88
  • ISSN: 0988-3754

How to cite

top

Margaria, I., and Zacchi, M.. "Right and left invertibility in $\lambda - \beta $-calculus." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 17.1 (1983): 71-88. <http://eudml.org/doc/92179>.

@article{Margaria1983,
author = {Margaria, I., Zacchi, M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {lambda calculus; left inverse; direct approximation; Boehm tree; lambda- beta calculus; normal forms; right inverses; graph model},
language = {eng},
number = {1},
pages = {71-88},
publisher = {EDP-Sciences},
title = {Right and left invertibility in $\lambda - \beta $-calculus},
url = {http://eudml.org/doc/92179},
volume = {17},
year = {1983},
}

TY - JOUR
AU - Margaria, I.
AU - Zacchi, M.
TI - Right and left invertibility in $\lambda - \beta $-calculus
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1983
PB - EDP-Sciences
VL - 17
IS - 1
SP - 71
EP - 88
LA - eng
KW - lambda calculus; left inverse; direct approximation; Boehm tree; lambda- beta calculus; normal forms; right inverses; graph model
UR - http://eudml.org/doc/92179
ER -

References

top
  1. 1. H. P. BARENDREGT, The Lambda Calculus, its Sintax and Semantics, North-Holland, Amsterdam, 1981. Zbl0467.03010MR622912
  2. 2. J. BERGSTRA and J. W. KLOP, Invertible Terms in the Lambda Calculas, Theor., Comp. Sci., vol 9, 1980, p. 27-38. MR535122
  3. 3. C. BÖHM, Alcune proprietà délie formefi β-η-normalinel λ-k calcolo. Pubblicazioni dell'Istituto per le Applicazioni del Calcolo, n. 696, Roma, 1968. 
  4. 4. C. BÖHM and M. DEZANI-CIANCAGLINI, Combinatorial problems, combinator equations and normal forms, Springer L. N. C. S., n° 14, 1974, p. 185-199. Zbl0309.68037MR429500
  5. 5. A. CHURCH, Combinatory logic as a semigroup (abstract), Bull. Amer. Math. Soc., vol. 43, 1937, p. 333. 
  6. 6. A. CHURCH, The Calculi of Lambda Conversion, Princeton University Press, Princeton, 1941. Zbl0026.24205MR5274JFM67.0041.01
  7. 7. H. B. CURRY and R. FEYS, Combinatory Logic, vol. 1, North-Holland, Amsterdam, 1958. Zbl0081.24104MR94298
  8. 8. M. DEZANI-CIANCAGLINI, Pattern-Matching Problems inside λ-β-η calculus, Proceedings Informatica 76, Bied, 1976. 
  9. 9. M. DEZANI-CIANCAGLINI, Characterization of normal forms possessing inverse in the ʋ-β-η calculus, Theor. Comput. Sci., vol. 2, 1976, p. 323-337. Zbl0368.02028MR444444
  10. 10. J. J. LÉVY, An algebraic interpretation of the λ-β-k-Calculus and an application of a labelled λ-Calculus, Theor. Comput. Sci., vol. 2, 1976, p. 97-114. Zbl0335.02016MR409129
  11. 11. C. P. WADSWORTH, The relation between computational and denotational properties for Scott's D√-models of the lambda-calculus, SIAM J. Comput., vol. 5, 1976, p. 488-521. Zbl0346.02013MR505308

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.