Algebraic definition of a functional programming language and its semantic models

Manfred Broy; Martin Wirsing

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1983)

  • Volume: 17, Issue: 2, page 137-161
  • ISSN: 0988-3754

How to cite

top

Broy, Manfred, and Wirsing, Martin. "Algebraic definition of a functional programming language and its semantic models." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 17.2 (1983): 137-161. <http://eudml.org/doc/92182>.

@article{Broy1983,
author = {Broy, Manfred, Wirsing, Martin},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {abstract types; partial recursive functions; termination problem; partial algebras; semantic models; fixed point theory},
language = {eng},
number = {2},
pages = {137-161},
publisher = {EDP-Sciences},
title = {Algebraic definition of a functional programming language and its semantic models},
url = {http://eudml.org/doc/92182},
volume = {17},
year = {1983},
}

TY - JOUR
AU - Broy, Manfred
AU - Wirsing, Martin
TI - Algebraic definition of a functional programming language and its semantic models
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1983
PB - EDP-Sciences
VL - 17
IS - 2
SP - 137
EP - 161
LA - eng
KW - abstract types; partial recursive functions; termination problem; partial algebras; semantic models; fixed point theory
UR - http://eudml.org/doc/92182
ER -

References

top
  1. Note: L.N.C.S., Lecture Notes in Computer Science; I.C.A.L.P., Int. Colloquium on Automata, Languages and Programming. 
  2. 1. J. BACKUS, Can Programming be Liberated from the von Neumann Style? A Functional Style and lts Algebra of Programs, Comm. A.C.M., Vol. 21, No. 8, 1978, pp. 613-641. Zbl0383.68013MR520392
  3. 2. F. L. BAUER and H. WÖSSNER, Algorithmische Sprache und Programmentwicklung, Berlin-Heidelberg-New York, Springer, 1981. Zbl0466.68006
  4. 3. J. W. DE BAKKER, Least Fixed Points Revisited. In C. BÖHM, Ed., λ-Calculus and Computer Science Theory, Roma, I.N.C.S., Vol. 37, pp. 27-62, Berlin, Springer, 1975. Zbl0328.68009MR474942
  5. 4. J. A. BERGSTRA and J. V. TUCKER, Algebraic Specification of Computable and Semi-Computable Data Structures, Afdeling Informatica Amsterdam, IW115/79, 1979. Zbl0419.68029
  6. 5. G. BIRKHOFF and J. D. LIPSON, Heterogeneous Algebras, J. Comb. Theory, Vol. 8, 1970, pp.115-133. Zbl0211.02003MR250887
  7. 6. M. BROY, Transformation Parallel Ablaufender Programme, Dissertation, Technische Universitât München, Fakultät für Mathematik, 1980. Zbl0461.68013
  8. 7. M. BROY, W. DOSCH, H. PARTSCH, P. PEPPER and M. WIRSING, Existential Quantifiers in Abstract Data Types. In H.A. MAURER, Ed., Proc. of the Sixth I.C.A.L.P., Graz, I..N.C.S., Vol. 71, pp. 73-87, Berlin: Springer 1979. Zbl0404.68026MR573235
  9. 8. M. BROY and M. WIRSING, Programming Languages as Abstract Data Types. In M. DAUCHET, Ed., 5e Colloque de Lille sur les arbres en algèbre et en programmation, Lille, February 1980, pp. 160-177, Université de Lille, 1980. Zbl0433.68014
  10. 9. M. BROY and M. WIRSING, Partial-Recursive Functions and Abstract Data Types, Bulletin of the E.A.T.C.S., Vol. 11, June, 1980, pp. 34-41. 
  11. 10. M. BROY and M. WIRSING, On the Algebraic Specification of Nondeterministic Programming Languages. In E.ASTESIANO and C.BÖHM, Eds., 6th Colloquium on Trees in Algebra and Programming, Genova, L..N.C.S., Vol. 112, pp. 162-179, Berlin, Springer, 1981. Zbl0462.68063MR623271
  12. 11 M. BROY and M. WIRSING, Partial Abstract Types, Acta Informatica, Vol. 18, 1982, pp. 47-64. Zbl0494.68020MR688344
  13. 12. M. BROY and M. WIRSING, On the Algebraic Specification of Finitary Infinite Communicating Processes. In D. BJORNER, Ed., I.F.LP. Working Conference on Formal Description of Programming Concepts II, Garmisch 1982 (to appear). Zbl0512.68021
  14. 13 M. BROY, C. PAIR and M. WIRSING, A Systematic Study of Models of Abstract Data Types, Centre de Recherche en Informatique de Nancy, Report 81-R-042, 1981. Zbl0552.68010
  15. 14 M. BROY, P. PEPPER and M. WIRSING, On Relations Between Programs. In B. ROBINET, Ed., 4th International Symposium on Programming, Paris, April, 22nd-24th 1980, L.N.C.S., Vol. 83, pp. 59-78, Berlin, Springer. Zbl0435.68017
  16. 15. C. C. CHANG and H. J. KEISLER, Model Theory, Studies in Logic and the Foundations of Mathematics, Vol. 73, Amsterdam, North-Holland, 1973. Zbl0276.02032MR409165
  17. 16. B. COURCELLE and M. NIVAT, The Algebraic Semantics of Program Schemas. In J. WINKOWSKI, Ed., Proc. Math. Foundations of Comp. Science, Zakopane, L.N.C.S., Vol. 64, pp. 16-30, Berlin, Springer, 1978. Zbl0384.68016MR519827
  18. 17. M. C. GAUDEL, Génération et preuve de compilateurs basées sur une sémantique formelle des langages de programmation, Thèse d'État, Nancy, March, 1980. 
  19. 18. G. GOGUEN, J. W. THATCHER and E. G. WAGNER, An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types. In R. T. YEH, Ed., Current trends in programming methodology, Vol. 4, Data Structuring, pp. 80-149, N.J., Prentice Hall, 1978. 
  20. 19. G. GRÄTZER, Universal Algebra, Princeton, Van Nostrand, 1968. Zbl0182.34201MR248066
  21. 20. J. V. GUTTAG, The Specification and Application to Progamming of Abstract Data Types, Ph. D. Th., Univ. of Toronto, Dept. of Comp. Sc., Rep. CSRG-59, 1975. 
  22. 21. P. HITCHCOCK and D. PARK, Induction Rules and Termination Proof. In M. NIVAT, Ed., Proc. of the first I.C.A.L.P., I.R.I.A., pp. 225-251, Amsterdam, North-Holland, 1973. Zbl0387.68011MR495103
  23. 22. S. MCLANE, Categories for the Working Mathematician, Berlin: Springer, 1971. Zbl0232.18001MR354798
  24. 23. Z. MANNA, Mathematical Theory of Computation,New York, McGram Hill, 1974 Zbl0353.68066MR400771
  25. 24. Z. MANNA and A. SHAMIR, The Theoretical Aspects of the Optimal Fixed Point, S.I.A.M. J. Comp., Vol. 5, No. 3, 1978, pp. 414-426. Zbl0358.68017MR440995
  26. 25. R. MILNER, Fully Abstract Models of Types -Calculi, Vol. 4, 1977, pp. 1-22. Zbl0386.03006MR498061
  27. 26. C. PAIR, Types abstraits et sémantique algébrique des langages de programmation, Centre de Recherche en Informatique de Nancy, Rapport 80-R-011, 1980. 
  28. 27. P. PEPPER, A Study on Transformational Semantics. In F. L. BAUER and M. BROY, Eds., Proc. International Summer School on Program Construction, Marktoberdorf, 1978, L.N.C.S., Vol. 69, Berlin, Springer, 1979, pp. 322-405. Zbl0408.68074MR583152
  29. 28. W. DE ROEVER, Recursion and Parameter Mechanism: an Axiomatic Approach. In J. LOECKX, Ed., Proc. of the second I.C.A.L.P., Saarbrücken, L.N.C.S., Vol. 14, Berlin, Springer, 1975, pp. 34-65. Zbl0302.68019MR428768
  30. 29. H. Jr. ROGERS, Theory of Recursive Functions and Effective Computability, New York, McGraw-Hill Book Company, 1967. Zbl0183.01401MR224462
  31. 30. J. R. SHOENFIELD, Mathematical Logic, Reading (Massachusetts): Addison-Wesley, 1969. Zbl0155.01102MR225631
  32. 31. E. G. WAGNER, J. W. THATCHER and J. B. WRIGHT, Programming Languages as Mathematical Objects. In J. WINKOWSKI, Ed., Proc. Math. Foundations of Computer Science, Zakopane, L.N.C.S., Vol. 64, Berlin, Springer, 1978, pp. 84-101. Zbl0394.68008MR519830
  33. 32. M. WAND, First-Order Identities as a Defining Language, Indiana University, Comp. Science Department, Technical Report No. 29, 1977. Zbl0424.68022
  34. 33. M. WIRSING, P. PEPPER, H. PARTSCH, W. DOSCH and M. BROY, On Hierarchies of Abstract Types, Acta Informatica (to appear). Preliminary version: Technische Universität München, Institut für Informatik, TUM-I 8007. Zbl0506.68024MR720236
  35. 34. M. WIRSING and M. BROY, Abstract Data Types as Lattices of Finitely Generated Models. In P. DEMBINSKI, Ed., Proc. Math. Foundations of Computer Science, Rydzyna, L.N.C.S., Vol. 88, Berlin, Springer, 1980, pp. 673-685. Zbl0441.68014MR744200

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.