Définitions récursives par cas

B. Courcelle; F. Lavandier

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1984)

  • Volume: 18, Issue: 2, page 91-129
  • ISSN: 0988-3754

How to cite


Courcelle, B., and Lavandier, F.. "Définitions récursives par cas." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 18.2 (1984): 91-129. <http://eudml.org/doc/92206>.

author = {Courcelle, B., Lavandier, F.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {denotational semantics; recursive definitions; constructs; non- deterministic programs},
language = {fre},
number = {2},
pages = {91-129},
publisher = {EDP-Sciences},
title = {Définitions récursives par cas},
url = {http://eudml.org/doc/92206},
volume = {18},
year = {1984},

AU - Courcelle, B.
AU - Lavandier, F.
TI - Définitions récursives par cas
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1984
PB - EDP-Sciences
VL - 18
IS - 2
SP - 91
EP - 129
LA - fre
KW - denotational semantics; recursive definitions; constructs; non- deterministic programs
UR - http://eudml.org/doc/92206
ER -


  1. 1. S. BLOOM et R. TINDELL, Varieties of if Then-else, Siam J. Comput. vol. 12, 1983, p. 677-707. Zbl0518.68010MR721007
  2. 2. G. BOUDOL, Calculs maximaux et sémantique opérationnelle des programmes non déterministes, Thèse doctorat, Université de Paris-7, 1980. 
  3. 3. B. COURCELLE, Infinite Trees in Normal Form and Recursive Equations having a Unique Solution, Math. Systems Theory, vol. 13, 1979, p. 131-180. Zbl0418.68013MR553879
  4. 4. B. COURCELLE, Fundamental Properties of Infinite Trees, Theor. Comput. Sc., vol. 25, 1984, p. 95-169. Zbl0521.68013MR693076
  5. 5. B. COURCELLE, An Axiomatic Approach to the Korenjak-Hopcroft Algorithms, Math. Systems Theory, vol. 16, 1983, p. 191-231. Zbl0581.68032MR702448
  6. 6. B. COURCELLE et P. FRANCHI-ZANNETTACCI, Attribute Grammars and Recursive Program Schemes, Theor. Comput. Sc., vol. 17, 1982, p. 163-191 and p. 235-257. Zbl0481.68068
  7. 7. B. COURCELLE et F. LAVANDIER, A Class of Program Schemes Based on Tree Rewriting Systems 8th C.A.A.P., L'Aquila, Lec. Notes Comp. Sc., Springer, vol.159, 1983, p. 191-204 Zbl0518.68015MR744210
  8. 8. B. COURCELLE, M. NIVAT, The algebraic semantics of recursive program schemes: MFCS'78, Lec. Notes Comput. Sc., vol. 64, p. 16-30. Zbl0384.68016MR519827
  9. 9. J. DARLINGTON, R. BURSTALL, A System which Automatically Improves Program, Acta Informatica, vol. 6, 1976, p. 41-60. Zbl0323.68008
  10. 10. E. FRIEDMAN, Equivalence Problems for Deterministic Context-free Languages andMonadic Recursion Schemes, J. Comput. System Sc., 14, 1977, p. 334-359. Zbl0358.68109MR443445
  11. 11. S. GARLAND et D. LUCKHAM, Program Schemes, Recursion Schemes and Formal Languages, J. Comput. System Sc., vol.7, 1973, p. 119-160. Zbl0277.68010MR315930
  12. 12. J. GOGUEN, J. THATCHER, E. WAGNER et J. WRIGHT, Initial Algebra Semantics and Continuons Algebras, J. Assoc. Comput. Mach., vol. 24, 1977, p. 68-95. Zbl0359.68018MR520711
  13. 13. I. GUESSARIAN, Algebraic Semantics, Lec. Notes Comput. Sc., vol. 99, Springer-Verlag, 1981. Zbl0474.68010MR617908
  14. 14. G. HUET, Confluent Reductions, Abstract Properties and Applications to Term Rewriting Systems, J. Assoc. Comput. Mach., vol. 27, 1980, p. 797-821. Zbl0458.68007MR594700
  15. 15. G. HUET et J. M. HULLOT, Proofs by induction in Equational Theories with Constructors, I. Compt. System Sc., Vol. 25, 1982, p. 239-266. Zbl0532.68041MR680519
  16. 16. G. HUET et B. LANG, Proving and Applyind Program Transformations Expressed with 2nd Order Patterns, Acta Informatica, vol.11, 1978, p. 31-55. Zbl0389.68008MR514752
  17. 17. G. HUET et J. J. LEVY, Call by Need Computations in Nonambigous Linear Term Rewriting System, Laboria report, vol. 359, 1979. 
  18. 18. G. HUET et D. OPPEN, Equations and Rewrite Rules, a Survey, Proceedings of the International Symposium on Formal Languages Theory, Santa Barbara, California (December 10-14, 1979), 
  19. 19. F. LAVANDIER, Sur les systèmes de définitions récursives par cas. Application à la sémantique dénotationnelle, Thèse de 3e cycle, Université de Bordeaux-I, 1982. 
  20. 20. Z. MANNA, A. SHAMIR, The Theoretical Aspects of the Optimal Fixedpoint, S.I.A.M., J. Comput., vol. 5, 1976, p. 414-426. Zbl0358.68017MR440995
  21. 21. B. MAYOH, Attribute Grammars and Mathematical Semantics; S.I.A.M. J. Comput., vol. 10, 1981, p. 503-518. Zbl0462.68062MR623062
  22. 22. M. NIVAT, On the Interpretation of Polyadic Recursive Program Schemes, Symposia Mathematica, vol.15, Academic Press, 1975, p. 255-281. Zbl0346.68041MR391563
  23. 23. J. C. RAOULT et J. VUILLEMIN, Operational and Semantic Equivalence between Recursive Programs, J. Assoc. Comput. Mach., vol. 27, 1980, p. 772-796. Zbl0447.68004MR594699
  24. 24. B. ROSEN, Tree Manipulation Systems and Church-Rosser Theorems, J. Assoc. Comput. Mach., vol. 20, 1973, p. 160-187. Zbl0267.68013MR331850
  25. 25. J. STOY, Semantic models, in Theoretical Foundations of Programming Methodology, M. BROY and G. SCHMIDT, éd., D. Reidel Pub. Co., Dordrecht, Holland, 1982, p. 293-325. Zbl0513.68072MR696964
  26. 26. R. TENNENT, The denotational Semantics of Programming Languages, Comm. of A.C.M., vol.19-8, 1976, p.437-453. Zbl0337.68010MR428771
  27. 27. S. WALKER et H. STRONG, Characterizations of Flow-chartable Recursions, J. Comput. System Sc., vol. 7, 1973, p. 404-447. Zbl0266.68011MR331854
  28. 28. J. ENGELFRIET, Some Open Questions and Recent Results on Tree Transducers and Tree Languages, même volume que [18] 
  29. 29. P. FRANCHI-ZANNETTACCI, Attributs sémantiques et schémas de programmes, Thèse d'État, Université de Bordeaux-I, 1982. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.