Reduction semantics for rational schemes

K. Indermark

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1984)

  • Volume: 18, Issue: 3, page 209-223
  • ISSN: 0988-3754

How to cite

top

Indermark, K.. "Reduction semantics for rational schemes." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 18.3 (1984): 209-223. <http://eudml.org/doc/92208>.

@article{Indermark1984,
author = {Indermark, K.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {recursive definitions; functional calculi; Rational schemes; typed combinators; regular equations; higher type recursion; non-deterministic operational semantics; reduction semantics; denotational semantics},
language = {eng},
number = {3},
pages = {209-223},
publisher = {EDP-Sciences},
title = {Reduction semantics for rational schemes},
url = {http://eudml.org/doc/92208},
volume = {18},
year = {1984},
}

TY - JOUR
AU - Indermark, K.
TI - Reduction semantics for rational schemes
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1984
PB - EDP-Sciences
VL - 18
IS - 3
SP - 209
EP - 223
LA - eng
KW - recursive definitions; functional calculi; Rational schemes; typed combinators; regular equations; higher type recursion; non-deterministic operational semantics; reduction semantics; denotational semantics
UR - http://eudml.org/doc/92208
ER -

References

top
  1. 1. H. P. BARENDREGT, The Lambda-Calculus, Its Syntax and Semantics, North-Holland P.C. 1981. Zbl0467.03010MR622912
  2. 2. H. BEKIĆ, Definable Operations in General Algebras, and the Theory of Automata and Flowcharts, Research Report, I.B.M. Laboratory, Vienna, 1969. 
  3. 3. W. DAMM, E. FEHR and K. INDERMARK, Higher type recursion and self-application as control structures, in: E. NEUHOLD, Ed., Formal Description of Programming Concepts, North-Holland, Amsterdam, 1978, pp. 461-487. Zbl0373.68021MR537917
  4. 4. W. DAMM, The 10- and OI-hierarchies, Theoret. Comput. Sc., 20, 1982, 2, pp. 95-208. Zbl0478.68012MR666544
  5. 5. I. GUESSARIAN, Algebraic Semantics, Lecture Notes in Computer Science, 99, 1981. Zbl0474.68010MR617908
  6. 6. K. INDERMARK, Schemes with recursion on higher types, Proc. M.F.C.S.-76, Lecture Notes in Computer Science, 45, 1976, pp. 352-358. Zbl0337.68015
  7. 7. K. INDERMARK, Análisis algebráico der estructuras de control, Proc. Seminario sobre relaciones entre la lógica matemática y la informática teorica, Universidad Complutense de Madrid, 1981. 
  8. 8. K. INDERMARK, On rational definitions in complete algebras without rank, Theoret. Comput. Sc., 21, 1982, pp. 281-313. Zbl0498.68017MR680919
  9. 9. K. INDERMARK, Complexity of infinite trees, I.C.A.L.P. 83, Barcelona, 1983. Zbl0528.68014MR727668
  10. 10. M. NIVAT, Languages algébriques sur le magma libre et sémantique des schémas de programme, in: Automata, Languages, and Programming, M. NIVAT, Ed., North-Holland P.C., 1972, pp. 293-308. Zbl0279.68010MR383813
  11. 11. M. NIVAT, On the Interpretation of Recursive Polyadic Program Schemes, Symposia Matematica, 15, Rome, 1975, pp. 255-281. Zbl0346.68041MR391563
  12. 12. E. G. WAGNER, An Algebraic Theory of Recursive Definitions and Recursive Languages, Proc. 3rd A.C.M. Symp. Theory of Computing, 1971, pp. 12-23. Zbl0252.02048
  13. 13. E. G. WAGNER, Languages for Defining Sets in Arbitrary Algebras, Proc. I.E.E.E. Conf. SWAT, 12, 1971, pp. 192-201. 
  14. 14. M. WAND, A concrete approach to abstract recursive definitions in: Automata, Languages, and Programming, M. NIVAT, Ed., North-Holland P.C., 1972, pp. 331-344. Zbl0278.68066MR366767

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.