Decidability of periodicity for infinite words

Jean-Jacques Pansiot

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1986)

  • Volume: 20, Issue: 1, page 43-46
  • ISSN: 0988-3754

How to cite

top

Pansiot, Jean-Jacques. "Decidability of periodicity for infinite words." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 20.1 (1986): 43-46. <http://eudml.org/doc/92244>.

@article{Pansiot1986,
author = {Pansiot, Jean-Jacques},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {free monoids; elementary morphisms; infinite word; iterated morphism},
language = {eng},
number = {1},
pages = {43-46},
publisher = {EDP-Sciences},
title = {Decidability of periodicity for infinite words},
url = {http://eudml.org/doc/92244},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Pansiot, Jean-Jacques
TI - Decidability of periodicity for infinite words
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1986
PB - EDP-Sciences
VL - 20
IS - 1
SP - 43
EP - 46
LA - eng
KW - free monoids; elementary morphisms; infinite word; iterated morphism
UR - http://eudml.org/doc/92244
ER -

References

top
  1. 1. K. CULIK II and T. HARJU, The ω-Sequence Equivalence Problem for DOL Systems is Decidable, J.A.C.M., Vol. 31, 1984, pp. 282-298. Zbl0632.68078MR819139
  2. 2. K. CULIK II and A. SALOMAA, On Infinite Words Obtained by Iterating Morphisms, Theoretical Computer Science, Vol. 19, 1982, pp. 29-38. Zbl0492.68059MR664411
  3. 3. T. HEAD, Adherence Equivalence is Decidable for DOL Languages, Proceedings of the Symposium on Theoretical Aspects of Computer Science, Paris, April 1984. Lecture Notes in Computer Science No. 166, pp. 241-249, Springer-Verlag, Berlin, 1984. Zbl0543.68060MR773326
  4. 4. J. J. PANSIOT, Bornes inférieures sur la complexité des facteurs des mots infinis engendrés par morphismes itérés, Ibid., pp. 230-240. Zbl0543.68061MR773325
  5. 5. G. ROZENBERG and A. SALOMAA, The Mathematical Theory of L Systems, Academic Press, NewYork, 1980. Zbl0508.68031MR561711

NotesEmbed ?

top

You must be logged in to post comments.