Decidability of periodicity for infinite words
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1986)
- Volume: 20, Issue: 1, page 43-46
- ISSN: 0988-3754
Access Full Article
topHow to cite
topReferences
top- 1. K. CULIK II and T. HARJU, The ω-Sequence Equivalence Problem for DOL Systems is Decidable, J.A.C.M., Vol. 31, 1984, pp. 282-298. Zbl0632.68078MR819139
- 2. K. CULIK II and A. SALOMAA, On Infinite Words Obtained by Iterating Morphisms, Theoretical Computer Science, Vol. 19, 1982, pp. 29-38. Zbl0492.68059MR664411
- 3. T. HEAD, Adherence Equivalence is Decidable for DOL Languages, Proceedings of the Symposium on Theoretical Aspects of Computer Science, Paris, April 1984. Lecture Notes in Computer Science No. 166, pp. 241-249, Springer-Verlag, Berlin, 1984. Zbl0543.68060MR773326
- 4. J. J. PANSIOT, Bornes inférieures sur la complexité des facteurs des mots infinis engendrés par morphismes itérés, Ibid., pp. 230-240. Zbl0543.68061MR773325
- 5. G. ROZENBERG and A. SALOMAA, The Mathematical Theory of L Systems, Academic Press, NewYork, 1980. Zbl0508.68031MR561711
Citations in EuDML Documents
top- Bo Tan, Zhi-Ying Wen, Periodicity problem of substitutions over ternary alphabets
- Bo Tan, Zhi-Ying Wen, Periodicity Problem of Substitutions over Ternary Alphabets
- Fabien Durand, Decidability of the HD0L ultimate periodicity problem
- Toke M. Carlsen, Søren Eilers, A graph approach to computing nondeterminacy in substitutional dynamical systems