A parametric analysis of the largest induced tree problem in random graphs

M. Protasi; M. Talamo

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1986)

  • Volume: 20, Issue: 3, page 211-219
  • ISSN: 0988-3754

How to cite

top

Protasi, M., and Talamo, M.. "A parametric analysis of the largest induced tree problem in random graphs." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 20.3 (1986): 211-219. <http://eudml.org/doc/92257>.

@article{Protasi1986,
author = {Protasi, M., Talamo, M.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {largest induced tree; random graphs},
language = {eng},
number = {3},
pages = {211-219},
publisher = {EDP-Sciences},
title = {A parametric analysis of the largest induced tree problem in random graphs},
url = {http://eudml.org/doc/92257},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Protasi, M.
AU - Talamo, M.
TI - A parametric analysis of the largest induced tree problem in random graphs
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1986
PB - EDP-Sciences
VL - 20
IS - 3
SP - 211
EP - 219
LA - eng
KW - largest induced tree; random graphs
UR - http://eudml.org/doc/92257
ER -

References

top
  1. 1. P. ERDÖS and Z. PALKA, Trees in Random Graphs, Discr. Math., Vol 46, 1983. Zbl0535.05049MR710885
  2. 2. J. FRIEDMAN, Constructing 0 (n log n) size monotone formulae for the k-th elementary symmetric polynomial of n boolean variables, Proc. 25th Symp. on Foundations of Computer Science, 1984. 
  3. 3. M. KARONSKI and Z. PALKA, On the Size of a Maximal Induced Tree in a Random Graph, Math. Slovaca, Vol. 30, 1980. Zbl0438.05028MR587240
  4. 4. A. MARCHETTI-SPACCAMELA and M. PROTASI, The Largest Tree in a Random Graph, Theor. Comp. Sci., Vol. 23, 1983. Zbl0512.68045MR702012
  5. 5. M. PROTASI and M. TALAMO, A New Probabilistic Model for the Study of Algorithmic Properties of Random Graph Problems, Proc. Conf. on Foundations of Computation Theory, Borgholm, Lect. Notes in Comp. Sci., Vol. 158, 1983. Zbl0549.68068MR734734
  6. 6. M. PROTASI and M. TALAMO, A General Analysis of the Max-Independent Set and Related Problems on Random Graphs, Tech. Rep. 3/84, Dip. Matematica, Università dell'Aquila, 1984. 
  7. 7. M. PROTASI and M. TALAMO, On the Maximum Size of Random Trees, Proc. X Coll. on Trees in Algebra and Programming, Berlin, Lect. Notes in Comp. Sci., Vol. 185, 1985. Zbl0576.05014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.