Varieties of finite categories

Alex Weiss; Denis Therien

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1986)

  • Volume: 20, Issue: 3, page 357-366
  • ISSN: 0988-3754

How to cite

top

Weiss, Alex, and Therien, Denis. "Varieties of finite categories." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 20.3 (1986): 357-366. <http://eudml.org/doc/92264>.

@article{Weiss1986,
author = {Weiss, Alex, Therien, Denis},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {finitely generated categories; finitely many objects; pseudovarieties; finite-state machines; decidability problem},
language = {eng},
number = {3},
pages = {357-366},
publisher = {EDP-Sciences},
title = {Varieties of finite categories},
url = {http://eudml.org/doc/92264},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Weiss, Alex
AU - Therien, Denis
TI - Varieties of finite categories
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1986
PB - EDP-Sciences
VL - 20
IS - 3
SP - 357
EP - 366
LA - eng
KW - finitely generated categories; finitely many objects; pseudovarieties; finite-state machines; decidability problem
UR - http://eudml.org/doc/92264
ER -

References

top
  1. 1. J. A. BRZOZOWSKI, Hierarchies of Aperiodic Languages, RAIRO Informatique Théorique, Vol. 10, 1976, pp. 35-49. MR428813
  2. 2. J. A. BRZOZOWSKI and I. SIMON, Characterization of Locally Testable Events, Discrete Math., Vol. 4, 1973, pp. 243-271. Zbl0255.94032MR319404
  3. 3. S. EILENBERG, Automata, Languages and Machines, Vol. B., Academic Press, New York, 1976. Zbl0359.94067MR530383
  4. 4. R. KNAST, A Semigroup Characterization of Dot-Depth One Languages, RAIRO Informatique Théorique, 1984. Zbl0522.68063MR743892
  5. 5. J. E. PIN, On the Semidirect Product of Two Semilattices, Semigroup Forum, Vol. 28, 1984, pp. 73-81. Zbl0527.20046MR729653
  6. 6. J. E. PIN, H. STRAUBING and D. THÉRIEN, Locally Trivial Categories and Unambiguous Concatenation, submitted for publication, 1985. Zbl0645.20046
  7. 7. J. RHODES, A Homomorphism Theorem for Finite Semigroups, Math. Syst. Th., Vol. 1, 1967, pp. 289-304. Zbl0204.03303MR223473
  8. 8. J. RHODES and B. TILSON, The Two-Sided Paper, unpublished manuscript, 1984. 
  9. 9. D. THÉRIEN, Classification of Finite Monoids : the Language Approach, Theoretical Computer Science, Vol. 14, 1981, pp. 195-208. Zbl0471.20055MR614416
  10. 10. B. TILSON, Categories as Algebras, an Essential Ingredient in the Theory of Semigroups, in preparation. Zbl0627.20031
  11. 11. D. THÉRIEN and M. SZNAJDER-GLODOWSKI, Finite Categories and Regular Languages, Technical report SOCS-85-25, Mcgill University, 1985. Zbl0761.68065
  12. 12. D. THÉRIEN and A. WEISS, Graph Congruences and Wreath Products, J. P. Ap. Alg., Vol. 36, 1985. Zbl0559.20042MR787173
  13. 13. A. WEISS, Varieties of Graph-Congruences, Ph. D. Thesis, McGill University, 1984. 
  14. 14. A. WEISS, The Local and Global Varieties Induced by Nilpotent Monoids, RAIRO Informatique Théorique, Vol. 20, n° 3, 1986, pp. 339-355. Zbl0607.20035MR894718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.