Exact and asymptotic distributions in digital and binary search trees

G. Louchard

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1987)

  • Volume: 21, Issue: 4, page 479-495
  • ISSN: 0988-3754

How to cite

top

Louchard, G.. "Exact and asymptotic distributions in digital and binary search trees." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 21.4 (1987): 479-495. <http://eudml.org/doc/92296>.

@article{Louchard1987,
author = {Louchard, G.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {digital search tree; Combinatorial relations; binary search trees},
language = {eng},
number = {4},
pages = {479-495},
publisher = {EDP-Sciences},
title = {Exact and asymptotic distributions in digital and binary search trees},
url = {http://eudml.org/doc/92296},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Louchard, G.
TI - Exact and asymptotic distributions in digital and binary search trees
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1987
PB - EDP-Sciences
VL - 21
IS - 4
SP - 479
EP - 495
LA - eng
KW - digital search tree; Combinatorial relations; binary search trees
UR - http://eudml.org/doc/92296
ER -

References

top
  1. 1. M. ABRAMOWITZ and I. A. STEGUN, Handbook of Mathematical Functions, 1965, Dover Publications. Zbl0171.38503
  2. 2. G. G. BROWN and B. O. SHUBERT, On Random Binary Trees, Math. Op. Res., Vol. 9, No. 1, 1984, pp. 43-65. Zbl0529.68035MR736638
  3. 3. L. DEVROYE, A Probabilistic Analysis of Height of Tries and of the Complexity of Triesort, Acta Informatica, Vol. 21, 1984, pp. 229-237. Zbl0555.68037MR769900
  4. 4. P. FLAJOLET, Approximate Counting: a Detailed Analysis, BIT, Vol. 25, 1985, pp. 113-134. Zbl0562.68027MR785808
  5. 5. P. FLAJOLET and R. SEDGEWICK, Digital Search Trees Revisited, S.I.A.M. J. Comp., Vol. 15, No. 3, 1986, pp. 748-767. Zbl0611.68041MR850421
  6. 6. J. FRANÇON, On the Analysis of Algorithms for Trees, Th. Comp. Sc., Vol. 4, 1977, pp. 155-169. Zbl0357.68033MR447025
  7. 7. J. FRANÇON, Arbres binaires de recherche : propriétés combinatoires et applications, RAIRO, Inf. Th.,Vol. 10, No. 12, 1986; pp. 35-50. Zbl0344.05103
  8. 8. D. H. GREENE and D. E. KNUTH, Mathematics for the analysis of algorithms, 1981, Birkhäuser. Zbl0481.68042MR642197
  9. 9. Ph. JACQUET and M. REGNIER, Limiting Distributions for Trie Parameters, Proc. C.A.A.R 86, Lecture Notes in Comp. Sc, Vol. 214, 1986, pp. 198-210. 
  10. 10. N. L. JOHNSON and S. KOTZ, Distribution in statistics: continuous univariate distributions, 1970, Wiley. Zbl0213.21101
  11. 11. P. KIRSCHENHOFER and H. PRODINGER, Some Further Results on Digital Search Trees, Proc. I.C.A.L.R., 1986, Lect. Notes Comp. Sc., Vol. 226, pp. 177-185. Zbl0596.68053MR864680
  12. 12. D. E. KNUTH, The Art of Computer Programming, Vol. I, 1969, Addison-Wesley. Zbl0191.18001MR378456
  13. 13. D. E. KNUTH, The Art of Computer Programming, Vol. III, 1973, Addison-Wesley. Zbl0302.68010MR378456
  14. 14. G. LOUCHARD, The Brownian Motion: a Neglected Tool for the Complexity Analysis of Sorted Tables Manipulations, R.A.I.R.O., Inf. Th., Vol. 4, 1983, pp. 365-385. Zbl0523.68031MR743895
  15. 15. G. LOUCHARD, Brownian Motion and Algorithms Complexity, B.I.T., Vol. 26, 1986 pp. 17-34. Zbl0602.68034MR833828
  16. 16. B. PITTEL, Paths in a Random Digital Tree: Limiting Distributions, Adv. Appl. Prob., Vol. 18, 1986, pp. 139-155. Zbl0588.60012MR827333

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.