Tours de Hanoï et automates

J.-P. Allouche; F. Dress

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1990)

  • Volume: 24, Issue: 1, page 1-15
  • ISSN: 0988-3754

How to cite

top

Allouche, J.-P., and Dress, F.. "Tours de Hanoï et automates." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 24.1 (1990): 1-15. <http://eudml.org/doc/92347>.

@article{Allouche1990,
author = {Allouche, J.-P., Dress, F.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {towers of Hanoï; finite automaton},
language = {fre},
number = {1},
pages = {1-15},
publisher = {EDP-Sciences},
title = {Tours de Hanoï et automates},
url = {http://eudml.org/doc/92347},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Allouche, J.-P.
AU - Dress, F.
TI - Tours de Hanoï et automates
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1990
PB - EDP-Sciences
VL - 24
IS - 1
SP - 1
EP - 15
LA - fre
KW - towers of Hanoï; finite automaton
UR - http://eudml.org/doc/92347
ER -

References

top
  1. 1. A. AHO, J. HOPCROFT et J. ULLMANN, The Design and Analysis of Computers Algorithms, Addison-Wesley, Reading, MA, 1974, Zbl0326.68005MR413592
  2. 2. J. ARSAC, Le construction de programmes structurés, Dunod, Paris, 1977. Zbl0451.68014
  3. 3. J. ARSAC, Les bases de la programmation, Dunod, Paris, 1983. Zbl0624.68004
  4. 4. J. ARSAC, Jeux et casse-tête à programmer, Dunod, Paris, 1985. 
  5. 5. M. D. ATKINSON, The Cyclic Towers of Hanoï, Inform. Process. Lett., vol. 13, 1981, p. 118-119. Zbl0467.68083MR645457
  6. 6. W. R. BALL, Mathematical Recreations and Essays, McMillan, London, 1892. Voir aussi Zbl65.1075.02
  7. W. R. BALL et H. S. M. COXETER, Mathematical Recreations and Essays, University of Toronto Press, Toronto, 1974, p. 316-317. MR351741
  8. 7. D. T. BARNARD, The Towers of Hanoï : an Exercise in Non Recursive Algorithm Development, Technical Report 80-103, Dept. of Computing and Information Science, Queen's University, 1980. 
  9. 8. Br. A. BROUSSEAU, Towers of Hanoï with More Pegs, J. Recreat. Math., vol. 8, (3), 1976, p. 165-176. Zbl0332.05003
  10. 9. P. BUNEMAN et L. LEVY, The Towers of Hanoï Problem, Inform. Process. Lett., vol. 10, 1980, p. 243-244. Zbl0439.05010MR585392
  11. 10. G. CHRISTOL, T. KAMAE, M. MENDÈS FRANCE et G. RAUZY, Suites algébriques, automates et substitutions, Bull. Soc. Math. France, vol. 108, 1980, p. 401-419. Zbl0472.10035MR614317
  12. 11. N. CLAUS (anagramme de Lucas), La tour de Hanoï, jeu de calcul, Revue Science et Nature, vol. 1, n° 8, 1884, p. 127-128. 
  13. 12. A. COBHAM, Uniform Tag Sequences, Math. Syst. Theory, vol. 6, 1972, p. 164-192. Zbl0253.02029MR457011
  14. 13. P. CULL et E. ECKLUND, Towers of Hanoï and Analysis of Algorithms, Amer. Math. Monthly, vol. 92, (6), June/July 1985. Zbl0589.90086MR795250
  15. 14. H. E. DUDENEY, The Canterbury Puzzles, Thos. Nelson & Sons, 1919, réédition Dovers Publications Ltd, New York, 1958. 
  16. 15. J. ENGELFRIET, The Trees of Hanoï, 1981, preprint. 
  17. 16. M. C. ER, A Representation Approach to the Towers of Hanoï Problem, The Comput. J., 1982, p. 442-447. Zbl0493.90100
  18. 17. M. C. ER, An Iterative Solution to the Cyclic Towers of Hanoï Problem, Technical Report, Dept. of Computing Science, University of Wollogang, 1982. 
  19. 18. M. C. ER, The Cyclic Towers of Hanoï : a Generalization, Technical Report, Dept. of Computing Science, University of Wollogang, 1982. 
  20. 19. M. C. ER, A Generalization of the Cyclic Towers of Hanoï, Technical Report, Dept. of Computing Science, University of Wollogang, 1982. 
  21. 20. M. C. ER, Towers of Hanoï with Black and White Discs, J. Inform. Optim. Sci., vol. 6, (1), 1985, p. 87-93. MR793864
  22. 21. M. C. ER, The Towers of Hanoï and Binary Numerals, J. Inform. Optim. Sci., vol. 6, (2), 1985, p. 147-152. Zbl0578.68054MR796981
  23. 22. M. C. ER, The Complexity of the Generalised Cyclic Towers of Hanoï, J. Algorithms, vol. 6, (3), 1985, p. 351-358. Zbl0576.68036MR800725
  24. 23. J.-C. FOURNIER, Pour en finir avec la dérécursivation du problème des tours de Hanoï, Actes Journée A.F.C.E.T. Combinatoire, Lyon-I, 1985. Zbl0701.68039
  25. 24. J. S. FRAME et B. M. STEWART, Solution of Problem n° 3918, Amer. Math. Monthly, vol. 48, 1941, p. 216-219. MR1525110
  26. 25. M. GARDNER, Mathemaiical Puzzles and Diversions, Simon & Schuster, New York, 1958, p. 55-62. 
  27. 26. M. GARDNER, Mathematical Games : the CuriousPropertiesof the Gray Code and How it Can Be Used to Solve Puzzles, Sci. Amer., août 1972, p. 106-109. 
  28. 27. C. GERETY et P. CULL, Time Complexity of the Towers of Hanoï Problem, SIGACT News, vol. 18, (1), 1986. Zbl0621.68029
  29. 28. J. HARDOUIN-DUPARC, Génération de mots par des piles d'automates, 1985, preprint. 
  30. 29. P. J. HAYES, A Note on the Towers of Hanoï Problem, The Comput. J., 1977, p. 282-285. Zbl0362.68057
  31. 30. K. JACOBS et M. KEANE, On 0-1 Sequences of Toeplitz Type, Z. Warsch. Geb., vol. 13, 1969, p. 123-131. Zbl0195.52703MR255766
  32. 31. M. S. KRISHNAMOORTHY et S. BISWAS, The Generalized Towers of Hanoï (preprint), 1978. 
  33. 32. I. LAVALLÉE, Note sur le problème des tours de Hanoï, Rev. Roumaine Math. pures et appl., vol. 30, 1985, p. 433-438. Zbl0577.05010MR802766
  34. 33. B. MEYER et C. BAUDOUIN, Méthodes de programmation, Eyrolles, Paris, 3e édition, 1984. Zbl0407.68002
  35. 34. S. MINKER, Three Variations on the Towers of Hanoï Problem, S. M. Thesis, University of Pennsylvania, 1983. 
  36. 35. H. PARTSCH et P. PEPPER, A Family of Rules for Recursion Removal, 1986, preprint. Zbl0345.68011MR443407
  37. 36. G. RAUZY, Cours de D.E.A. (communication privée), 1986. 
  38. 37. J. S. ROHL, Recursion via Pascal, Cambridge University Press, 1984. Zbl0547.68003
  39. 38. T. ROTH, The Tower of Brahma Revisited, J. Recreat. Math., vol. 7, n° 2, 1974, p. 116-119. 
  40. 39. A. SAINTE-LAGUE, Avec des nombres et des lignes, Vuibert, Paris, 1942, p. 71-78. 
  41. 40. F. SCHUH, The Master Book of Mathematical Recreations, Dover Publications, Inc., New York, 1968, p. 119-121. Zbl0191.27406
  42. 41. T. R. WALSH, The Towers of Hanoï Revisited: Moving the Rings by Counting the Moves, Inform. Process. Lett., vol. 15, 1982, p. 64-67. Zbl0487.90099MR675870
  43. 42. D. WOOD, The Towers of Brahma and Hanoï Revisited, J. Recreat. Math., vol. 14, n° 1, 1981, p. 17-24. Zbl0486.05014MR629340

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.