On a class of infinitary codes

Nguyen Huong Lâm; Do Long Van

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1990)

  • Volume: 24, Issue: 5, page 441-458
  • ISSN: 0988-3754

How to cite

top

Nguyen Huong Lâm, and Do Long Van. "On a class of infinitary codes." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 24.5 (1990): 441-458. <http://eudml.org/doc/92368>.

@article{NguyenHuongLâm1990,
author = {Nguyen Huong Lâm, Do Long Van},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {strict codes},
language = {eng},
number = {5},
pages = {441-458},
publisher = {EDP-Sciences},
title = {On a class of infinitary codes},
url = {http://eudml.org/doc/92368},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Nguyen Huong Lâm
AU - Do Long Van
TI - On a class of infinitary codes
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1990
PB - EDP-Sciences
VL - 24
IS - 5
SP - 441
EP - 458
LA - eng
KW - strict codes
UR - http://eudml.org/doc/92368
ER -

References

top
  1. 1. J. BERSTEL and D. PERRIN, Theory of Codes, Academic Press, 1985. Zbl0587.68066MR797069
  2. 2. DO LONG VAN, Contribution to Combinatorics on Words, Thesis, Humboldt University, Berlin, 1985. 
  3. 3. DO LONG VAN, Codes avec des mots infinis, R.A.I.R.O.-Informatique Théor. Applic., 1982, 16, p. 371-386. Zbl0498.68053MR707638
  4. 4. DO LONG VAN, Sous-monoïde et codes avec des mots infinis, Semigroup Forum, 1983, 26, p. 75-87. Zbl0504.68054MR685117
  5. 5. DO LONG VAN, Ensembles code-compatibles et une généralisation du théorème de Sardinas/Patterson, Theor. Comp. Science, 1985, 38, p.123-132. Zbl0574.20053MR805138
  6. 6. DO LONG VAN, Caractérisation combinatoire des sous-monoïdes engendrés par un code infïnitaire, Hanoi Preprint Series, n°6, 1984. 
  7. 7. DO LONG VAN, Sur les ensembles générateur minimaux des sous-monoïdes de A∞, C.R. Acad. Sci. Paris, 1985, 300, série I, p. 443-446. Zbl0578.68063MR794019
  8. 8. D. KÖNIG, Theorie der endlichen und undendlichen Graphen, Leipzig, 1936; Sur les correspondances multivoques des ensembles, Fundamenta Mathematicae, 1926, 8, p.114-134. Zbl0013.22803JFM62.0654.05
  9. 9. M. P. SCHÜTZENBERGER, Une théorie algébrique du codage, « Séminaire Dubreil », exposé n°15, Algèbre et Théorie des Nombres, année 1955-1956; C.R. Acad. Sci. Paris, 1956, 242, p. 862-864. MR75169
  10. 10. L. N. SHEVRIN, On subsemigroups of free semigroups (Russian), Dokl. Acad. Nauk SSSR, 1960, 1, p. 892-894. Zbl0100.02401MR111795
  11. 11. L. STAIGER, On infinitary fmite-length codes, R.A I.R.O.-Informatique Théor. Appll., 1986, 20, p. 483-494. Zbl0628.68056MR880849

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.