On finitely generated monoids of matrices with entries in

Andreas Weber; Helmut Seidl

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1991)

  • Volume: 25, Issue: 1, page 19-38
  • ISSN: 0988-3754

How to cite

top

Weber, Andreas, and Seidl, Helmut. "On finitely generated monoids of matrices with entries in $\mathbb {N}$." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 25.1 (1991): 19-38. <http://eudml.org/doc/92377>.

@article{Weber1991,
author = {Weber, Andreas, Seidl, Helmut},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {finite set of n by n matrices; multiplicative monoid; exact bound; Landau's function},
language = {eng},
number = {1},
pages = {19-38},
publisher = {EDP-Sciences},
title = {On finitely generated monoids of matrices with entries in $\mathbb \{N\}$},
url = {http://eudml.org/doc/92377},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Weber, Andreas
AU - Seidl, Helmut
TI - On finitely generated monoids of matrices with entries in $\mathbb {N}$
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1991
PB - EDP-Sciences
VL - 25
IS - 1
SP - 19
EP - 38
LA - eng
KW - finite set of n by n matrices; multiplicative monoid; exact bound; Landau's function
UR - http://eudml.org/doc/92377
ER -

References

top
  1. ChI83. T.-H. CHAN and O. IBARRA, On the Finite-Valuedness Problem for Sequential Machines, TCS, 1983, 23, pp. 95-101. Zbl0503.68037MR693072
  2. E74. S. EILENBERG, Automata, Languages, and Machines, Academic Press, New York, N.Y., 1974, A. MR530382
  3. Hs78. M. HARRISON, Introduction to Formal Language Theory, Addison-Wesley, Reading, Mass., 1978. Zbl0411.68058MR526397
  4. HoU79. J. HOPCROFT and J. ULLMAN, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading, Mass., 1979. Zbl0426.68001MR645539
  5. Ja77. G. JACOB, Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices, T.C.S., 1977, 5, pp. 183-204. Zbl0388.15001MR473075
  6. Ku88. W. KUICH, Finite Automata and Ambiguity, Report 253 of the IIG, Technische Universität Graz, 1988. 
  7. La09. E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1909. JFM40.0232.08
  8. Le87. H. LEUNG, An Algebraic Method for Solving Decision Problems in Finite Automata Theory, Ph. D. Thesis, The Pennsylvania State University, 1987. 
  9. MaSi77. A MANDEL and I. SIMON, On Finite Semigroups of Matrices, T.C.S., 1977, 5, pp. 101-111. Zbl0368.20049MR473070
  10. Ms84.1. J.-P. MASSIAS, Ordre maximum d'un élément du groupe symétrique et applications, Thèse 3e cycle, Université de Limoges, 1984. 
  11. Ms84.2. J.-P. MASSIAS, Majoration explicite de l'ordre maximum d'un élément du groupe symétrique, Annales Faculté des Sciences Toulouse, 1984, VI, pp. 269-281. Zbl0574.10043MR799599
  12. MsNRo88. J.-P. MASSIAS, J.-L. NICOLAS and G. ROBIN, Evaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique, Acta Arithmetica, 1988, 50, pp. 221-242. Zbl0588.10049MR960551
  13. McZ75. R. MCNAUGHTON and Y. ZALCSTEIN, The Burnside Problem for Semi-groups, J. Algebra, 1975, 34, pp. 292-299. Zbl0302.20054MR374301
  14. Re77. C. REUTENAUER, Propriétés arithmétiques et topologiques de séries rationnelles en variables non commutatives, Thèse 3e cycle, Université Paris-VI, 1977. 
  15. Se89. H. SEIDL, On the Finite Degree of Ambiguity of Finite Tree Automata, Acta Informatica, 1989, 26, pp. 527-542. Zbl0683.68049MR1006265
  16. Sr88. L. STAIGER, personal communication. 
  17. WeSe86. A. WEBER and H. SEIDL, On the Degree of Ambiguity of Finite Automata, Proc. M.F.C.S., 1986, in: L.N.C.S. 233, Springer-Verlag, pp. 620-629. Zbl0617.68055MR874641
  18. Tu90 P. TURAKAINEN, On the Finitness of the Multiplicative Monoid generated by a Nonnegative Matrix. Bull. EATCS, 1990, 40, pp. 270-272. Zbl0746.20047
  19. We87. A. WEBER, Über die Mehrdeutigkeit und Wertigkeit von endlichen Automaten und Transducern, Dissertation, Goethe-Universität Frankfurt am Main, 1987. 
  20. WeSe88. A. WEBER and H. SEIDL, On the Degree of Ambiguity of Finite Automata, Preprint, Goethe-Universität Frankfurt am Main, 1988, T.C.S. (to appear). Zbl0738.68059MR874641

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.